The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. B...The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. Based on an experimental observation, the different modes of landing and buffering are determined, which include the different numbers of landing legs and different motion modes of legs in the buffering process. Then a bionic locust mechanism is established, and the springs are used to replace the leg muscles to achieve a buffering effect. To reveal the dynamic performance in the buffering process of the bionic locust mechanism, a dynamic model is established with different modes of landing and buffering. In particular, to analyze the buffering process conveniently, an equivalent vibration dynamic model of the bionic locust mechanism is proposed.Given the support forces of the ground to the leg links, which can be obtained from the dynamic model, the spring forces of the legs and the impact resistance of each leg are the important parameters affecting buffering performance, and evaluation principles for buffering performance are proposed according to the aforementioned parameters. Based on the dynamic model and these evaluation principles, the buffering performances are analyzed and compared in different modes of landing and buffering on a horizontal plane and an inclined plane. The results show that the mechanism with the ends of the legs sliding can obtain a better dynamic performance. This study offers primary theories for buffering dynamics and an evaluation of landing buffer performance,and it establishes a theoretical basis for studies and engineering applications.展开更多
Terrestrial net primary production(NPP)is of fundamental importance to food security and ecosystem sustainability.However,little is known about how terrestrial NPP in African ecosystems has responded to recent changes...Terrestrial net primary production(NPP)is of fundamental importance to food security and ecosystem sustainability.However,little is known about how terrestrial NPP in African ecosystems has responded to recent changes in climate and other environmental factors.Here,we used an integrated ecosystem model(the dynamic land ecosystem model;DLEM)to simulate the dynamic variations in terrestrial NPP of African ecosystems driven by climate and other environmental factors during 1980-2009.We estimate a terrestrial NPP of 10.22(minimum-maximum range of 8.9-11.3)Pg C/yr during the study period.Our results show that precipitation variability had a significant effect on terrestrial NPP,explaining 74%of interannual variations in NPP.Over the 30-yr period,African ecosystems experienced an increase in NPP of 0.03 Pg C/yr,resulting from the combined effects of climate variability,elevated atmospheric CO_(2)concentration,and nitrogen deposition.Our further analyses show that there is a difference in NPP of 1.6 Pg C/yr between wet and dry years,indicating that interannual climatic variations play an important role in determining the magnitude of terrestrial NPP.Central Africa,dominated by tropical forests,was the most productive region and accounted for 50%of the carbon sequestered as NPP in Africa.Our results indicate that warmer and wetter climatic conditions,together with elevated atmospheric CO_(2)concentration and nitrogen deposition,have resulted in a significant increase in African terrestrial NPP during 1980-2009,with the largest contribution from tropical forests.展开更多
基金supported by the National Natural Science Foundation of China (Grant 51375035)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant 20121102110021)
文摘The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. Based on an experimental observation, the different modes of landing and buffering are determined, which include the different numbers of landing legs and different motion modes of legs in the buffering process. Then a bionic locust mechanism is established, and the springs are used to replace the leg muscles to achieve a buffering effect. To reveal the dynamic performance in the buffering process of the bionic locust mechanism, a dynamic model is established with different modes of landing and buffering. In particular, to analyze the buffering process conveniently, an equivalent vibration dynamic model of the bionic locust mechanism is proposed.Given the support forces of the ground to the leg links, which can be obtained from the dynamic model, the spring forces of the legs and the impact resistance of each leg are the important parameters affecting buffering performance, and evaluation principles for buffering performance are proposed according to the aforementioned parameters. Based on the dynamic model and these evaluation principles, the buffering performances are analyzed and compared in different modes of landing and buffering on a horizontal plane and an inclined plane. The results show that the mechanism with the ends of the legs sliding can obtain a better dynamic performance. This study offers primary theories for buffering dynamics and an evaluation of landing buffer performance,and it establishes a theoretical basis for studies and engineering applications.
基金This study was partially supported by NSF Decadal and Regional Climate Prediction using Earth System Models(AGS-1243220).
文摘Terrestrial net primary production(NPP)is of fundamental importance to food security and ecosystem sustainability.However,little is known about how terrestrial NPP in African ecosystems has responded to recent changes in climate and other environmental factors.Here,we used an integrated ecosystem model(the dynamic land ecosystem model;DLEM)to simulate the dynamic variations in terrestrial NPP of African ecosystems driven by climate and other environmental factors during 1980-2009.We estimate a terrestrial NPP of 10.22(minimum-maximum range of 8.9-11.3)Pg C/yr during the study period.Our results show that precipitation variability had a significant effect on terrestrial NPP,explaining 74%of interannual variations in NPP.Over the 30-yr period,African ecosystems experienced an increase in NPP of 0.03 Pg C/yr,resulting from the combined effects of climate variability,elevated atmospheric CO_(2)concentration,and nitrogen deposition.Our further analyses show that there is a difference in NPP of 1.6 Pg C/yr between wet and dry years,indicating that interannual climatic variations play an important role in determining the magnitude of terrestrial NPP.Central Africa,dominated by tropical forests,was the most productive region and accounted for 50%of the carbon sequestered as NPP in Africa.Our results indicate that warmer and wetter climatic conditions,together with elevated atmospheric CO_(2)concentration and nitrogen deposition,have resulted in a significant increase in African terrestrial NPP during 1980-2009,with the largest contribution from tropical forests.