In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke autom...In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.展开更多
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s...The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.展开更多
The existence of clearance in the joints of mechanisms system is inevitable.The movements of the real mechanism are deflection from the ideal mechanism due to the clearances and the motion accuracy is decreased.The ef...The existence of clearance in the joints of mechanisms system is inevitable.The movements of the real mechanism are deflection from the ideal mechanism due to the clearances and the motion accuracy is decreased.The effects of the hinge clearance on the crank and rocker mechanism system are studied.The system dynamics equation with clearance is presented.The contact dynamics model is established using the nonlinear equivalent spring-damp model and the friction effect is considered by using Coulomb friction model.Then the models are incorporated into ADAMS,and based on the model,large numbers numeric simulations are made.The regularity of contact forces in clearance are studied in detail.And the effects of clearance size,clearance friction on the mechanism dynamics characteristic are analyzed.The simulation results can predict the effects of clearance on the mechanism dynamics characteristic preferably.展开更多
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ...In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.展开更多
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster an...To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.展开更多
In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigi...In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigid body,a six degrees-of-freedom(DOF)dynamic model of a parafoil system including three DOF for translational motion and three DOF for rotational motion,is established according to the K rchhoff motion equation.Since the flexible winged paafoil system flying at low altitude is more susceptibleto winds,the motion characteristics of the parafoil system Wth and Wthout winds are simulated and analyzed.Furthermore,the ardropm test is used to further verify the model.The comparison results show that the simulation trajectory roughly overlaps with the actual flight track.The horzontnl velocity of the simulation model is in good accordance with the airdrop test,with a deviation less than0.5m/s,while its simulated vertical velocity fuctuates slightly under the infuence of the wind,and shows a similar trend to the ardrop test.It is concludedthat the established model can well describe the characteristics of the parafoil system.展开更多
In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves ...In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Naviertokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth's lateral motion.展开更多
A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbi...A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbit spacecraft. Principle and structure of the six-degree-of-freedom simulation system are introduced. The docking process dynamic of the vehicles is modeled. Experiment results and mathematical simulation data are compared to validating the simulation system. The comparisons of the results prove that the simulation system proposed can effectively simulate the on-orbit docking process of the spacecraft.展开更多
Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simula...Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.展开更多
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ...Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.展开更多
Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the ...Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code Proteus DS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.展开更多
The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Bas...The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.展开更多
In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achi...In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achieve an overall system model,the system is divided into five modules:the PEMFC stack(anode and cathode flows,membrane hydration,and stack voltage and power),cathode air supply(air compressor,supply manifold,cooler,and humidifier),anode fuel supply(hydrogen valve and humidifier),cathode exhaust exit(exit manifold and water return),and power conditioning(DC/DC and DC/AC) modules.Using a combination of empirical and physical modeling techniques,the model is developed to set the operation conditions of current,temperature,and cathode and anode gas flows and pressures,which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system.The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system,which is mathematically simple for system parameters and control designs.展开更多
In order to investigate the effects of trace gases on climate variation in the atmosphere, we have devel- oped a primitive equation two-dimensional dynamical climate model with five levels. A series of simula- tion re...In order to investigate the effects of trace gases on climate variation in the atmosphere, we have devel- oped a primitive equation two-dimensional dynamical climate model with five levels. A series of simula- tion results and discussions are shown in this paper, indicating that the model is useful and can correctly reproduced the main feature of the general atmospheric circulation and its seasonal changes. In addition, we have discussed the role of the Qinghai-Xizang Plateau on the formation process of summer monsoon in South Asia and found that the thermal effect of the Qjnghai-Xizang Plateau may not be the main factor controlling the onset and the variation of the summer monsoon in South Asia.展开更多
The coexistence of pollution from coal-fired heating and inefficient utilization of renewable resources in northern China has raised great concern.Current studies on heat-power systems are primarily focused on traditi...The coexistence of pollution from coal-fired heating and inefficient utilization of renewable resources in northern China has raised great concern.Current studies on heat-power systems are primarily focused on traditional combined heat and power(CHP)systems and are limited to static energy flow analysis or the dynamic characteristics of a single system component.Hence,it is difficult to make full use of the complementary potential of electrical energy and heat energy.This paper proposes a heat-power station(HPS)system based on renewable energy for the purpose of utilizing the surplus renewable energy to generate heat and meet heating demands.The overall architecture of the HPS system is established and its operational principle and dynamic characteristics of both the electrical and heating components in the system are analyzed and dynamic mathematical models are also presented.In addition,a coordinated electro-thermal control method based on system characteristics is designed to ensure the normal operation of a HPS.Simulation results verify the effectiveness of the model and control in the case of renewables fuctuation and heat load variations.展开更多
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. ...The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved.展开更多
By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by var...By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by various confinements are theoretically investigated, including a slab-like confinement where the polymer chains are sandwiched between two parallel impenetrable walls, and a capped nanochannel confinement with a circular or rectangular cross-section where the chains are bounded in three directions. The Brownian dynamics (BD) simulations based on the generalized bead-rod (GBR) model are performed to verify the theoretical predictions.展开更多
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian...This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.展开更多
Insulin secreted by pancreatic islet ˇ-cells is the principal regulating hormone of glucose metabolism.Disruption of insulin secretion may cause glucose to accumulate in the blood, and result in diabetes mellitus.Alt...Insulin secreted by pancreatic islet ˇ-cells is the principal regulating hormone of glucose metabolism.Disruption of insulin secretion may cause glucose to accumulate in the blood, and result in diabetes mellitus.Although deterministic models of the insulin secretion pathway have been developed, the stochastic aspect of this biological pathway has not been explored. The first step in this direction presented here is a hybrid model of the insulin secretion pathway, in which the delayed rectifying KCchannels are treated as stochastic events. This hybrid model can not only reproduce the oscillation dynamics as the deterministic model does, but can also capture stochastic dynamics that the deterministic model does not. To measure the insulin oscillation system behavior, a probability-based measure is proposed and applied to test the effectiveness of a new remedy.展开更多
The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing t...The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing to particle-particle and particle-wall interactions which are generally neglected at low concentra- tions. Most models do not consider such interactions and deviate significantly from experimental data. Furthermore, drag force, turbulence and turbulent dispersion play a crucial role and need to be precisely known in predicting local hydrodynamics. Therefore, critical factors such as the modelling approach, drag, dispersion, coefficient of restitution and turbulence are examined and discussed exhaustively in this paper. The Euler-Euler approach with kinetic theory of granular flow, Syamlal-O'Brien drag model and Reynolds stress turbulence model provide realistic predictions for such systems. The contribution of the turbulent dispersion force in improving the prediction is marginal but cannot be neglected at low solids volume fractions. Inferences drawn from the study and the finalised models will be instrumen- tal in accurately simulating the solids suspension in stirred tanks for a wide range of conditions. These models can be used in simulations to obtain precise results needed for an in-depth understanding of hydrodynamics in stirred tanks.展开更多
文摘In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.
基金This project is supported by National Natural Science Foundation of China(No.10342003).
文摘The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.
基金Sponsored by Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0520)
文摘The existence of clearance in the joints of mechanisms system is inevitable.The movements of the real mechanism are deflection from the ideal mechanism due to the clearances and the motion accuracy is decreased.The effects of the hinge clearance on the crank and rocker mechanism system are studied.The system dynamics equation with clearance is presented.The contact dynamics model is established using the nonlinear equivalent spring-damp model and the friction effect is considered by using Coulomb friction model.Then the models are incorporated into ADAMS,and based on the model,large numbers numeric simulations are made.The regularity of contact forces in clearance are studied in detail.And the effects of clearance size,clearance friction on the mechanism dynamics characteristic are analyzed.The simulation results can predict the effects of clearance on the mechanism dynamics characteristic preferably.
基金supported by the National Natural Science Foundation of China (10732030) and the 111 Project (B07009)
文摘In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025
文摘To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.
基金The National Natural Science Foundation of China(No.61273138,61573197)the National Key Technology R&D Program(No.2015BAK06B04)+1 种基金the Key Fund of Tianjin(No.14JCZDJC39300)the Key Technologies R&D Program of Tianjin(No.14ZCZDSF00022)
文摘In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigid body,a six degrees-of-freedom(DOF)dynamic model of a parafoil system including three DOF for translational motion and three DOF for rotational motion,is established according to the K rchhoff motion equation.Since the flexible winged paafoil system flying at low altitude is more susceptibleto winds,the motion characteristics of the parafoil system Wth and Wthout winds are simulated and analyzed.Furthermore,the ardropm test is used to further verify the model.The comparison results show that the simulation trajectory roughly overlaps with the actual flight track.The horzontnl velocity of the simulation model is in good accordance with the airdrop test,with a deviation less than0.5m/s,while its simulated vertical velocity fuctuates slightly under the infuence of the wind,and shows a similar trend to the ardrop test.It is concludedthat the established model can well describe the characteristics of the parafoil system.
基金supported by the National Natural Science Foundation of China (10732030)the Foundation for the Author of National Excellent Doctoral Dissertation (2007B31)
文摘In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Naviertokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth's lateral motion.
文摘A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbit spacecraft. Principle and structure of the six-degree-of-freedom simulation system are introduced. The docking process dynamic of the vehicles is modeled. Experiment results and mathematical simulation data are compared to validating the simulation system. The comparisons of the results prove that the simulation system proposed can effectively simulate the on-orbit docking process of the spacecraft.
基金Project(51205421)supported by the National Natural Science Foundation of ChinaProject(2012M521647)supported by the Postdoctoral Science Foundation of China
文摘Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.
基金financially supported by the National Natural Science Foundation of China (Nos. 51221462, 51134022,51174203 and 51074156)the National Basic Research Program of China (No. 2012CB214904)China Postdoctoral Science Foundation (No. 2013M531430)
文摘Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.
基金Supported by Human Resources Development Program of Korea Institute of Energy Technology Evaluation and Planning(KETEP),Ministry of Trade,Industry and Energy of Korea(Grant No.20134030200290)
文摘Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code Proteus DS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.
基金Project(2006BAB02A02)supported by the National Key Technology R&D Program for the 11th Five-year Plan of ChinaProject(09JJ4025)supported by the National Natural Science Foundation of Hunan Province,ChinaProject(51074178)supported by the National Natural Science Foundation of China
文摘The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.
基金Project supported by the National Natural Science Foundation of China (No.10472101)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20070335184)
文摘In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achieve an overall system model,the system is divided into five modules:the PEMFC stack(anode and cathode flows,membrane hydration,and stack voltage and power),cathode air supply(air compressor,supply manifold,cooler,and humidifier),anode fuel supply(hydrogen valve and humidifier),cathode exhaust exit(exit manifold and water return),and power conditioning(DC/DC and DC/AC) modules.Using a combination of empirical and physical modeling techniques,the model is developed to set the operation conditions of current,temperature,and cathode and anode gas flows and pressures,which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system.The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system,which is mathematically simple for system parameters and control designs.
文摘In order to investigate the effects of trace gases on climate variation in the atmosphere, we have devel- oped a primitive equation two-dimensional dynamical climate model with five levels. A series of simula- tion results and discussions are shown in this paper, indicating that the model is useful and can correctly reproduced the main feature of the general atmospheric circulation and its seasonal changes. In addition, we have discussed the role of the Qinghai-Xizang Plateau on the formation process of summer monsoon in South Asia and found that the thermal effect of the Qjnghai-Xizang Plateau may not be the main factor controlling the onset and the variation of the summer monsoon in South Asia.
基金supported by the State Grid Corporation of China under Grant 521500190017.
文摘The coexistence of pollution from coal-fired heating and inefficient utilization of renewable resources in northern China has raised great concern.Current studies on heat-power systems are primarily focused on traditional combined heat and power(CHP)systems and are limited to static energy flow analysis or the dynamic characteristics of a single system component.Hence,it is difficult to make full use of the complementary potential of electrical energy and heat energy.This paper proposes a heat-power station(HPS)system based on renewable energy for the purpose of utilizing the surplus renewable energy to generate heat and meet heating demands.The overall architecture of the HPS system is established and its operational principle and dynamic characteristics of both the electrical and heating components in the system are analyzed and dynamic mathematical models are also presented.In addition,a coordinated electro-thermal control method based on system characteristics is designed to ensure the normal operation of a HPS.Simulation results verify the effectiveness of the model and control in the case of renewables fuctuation and heat load variations.
基金This work was supported by the Natural Science Foundation of China through Grant No. 21676051, New Century Excellent Talents in University (NCET-12-0703). One of the authors (Shuyan Wang) thanks the China Scholarship Council (CSC) for providing financial support to the Sundaresan's group of Princeton University.
文摘The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved.
基金supported the National Natural Science Foundation of China(Nos.11032006,11072094,and11121202)the Ph.D.Program Foundation of Ministry of Education of China(No.20100211110022)+1 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program of China(No.2013GB110002)the Fundamental Research Funds for the Central Universities(No.lzujbky2013-1)
文摘By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by various confinements are theoretically investigated, including a slab-like confinement where the polymer chains are sandwiched between two parallel impenetrable walls, and a capped nanochannel confinement with a circular or rectangular cross-section where the chains are bounded in three directions. The Brownian dynamics (BD) simulations based on the generalized bead-rod (GBR) model are performed to verify the theoretical predictions.
基金support of the National Natural Science Foundation of China(NSFC) under grants Nos.20976091 and 20806045the Key Project of National High-tech R&D Program under grant No.2009AA044701the Program for New Century Excellent Talents in universities(NCET)
文摘This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.
基金supported by the National Science Foundation under award DMS-1225160,CCF-0726763,and CCF-0953590the National Institutes of Health under award GM078989
文摘Insulin secreted by pancreatic islet ˇ-cells is the principal regulating hormone of glucose metabolism.Disruption of insulin secretion may cause glucose to accumulate in the blood, and result in diabetes mellitus.Although deterministic models of the insulin secretion pathway have been developed, the stochastic aspect of this biological pathway has not been explored. The first step in this direction presented here is a hybrid model of the insulin secretion pathway, in which the delayed rectifying KCchannels are treated as stochastic events. This hybrid model can not only reproduce the oscillation dynamics as the deterministic model does, but can also capture stochastic dynamics that the deterministic model does not. To measure the insulin oscillation system behavior, a probability-based measure is proposed and applied to test the effectiveness of a new remedy.
文摘The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing to particle-particle and particle-wall interactions which are generally neglected at low concentra- tions. Most models do not consider such interactions and deviate significantly from experimental data. Furthermore, drag force, turbulence and turbulent dispersion play a crucial role and need to be precisely known in predicting local hydrodynamics. Therefore, critical factors such as the modelling approach, drag, dispersion, coefficient of restitution and turbulence are examined and discussed exhaustively in this paper. The Euler-Euler approach with kinetic theory of granular flow, Syamlal-O'Brien drag model and Reynolds stress turbulence model provide realistic predictions for such systems. The contribution of the turbulent dispersion force in improving the prediction is marginal but cannot be neglected at low solids volume fractions. Inferences drawn from the study and the finalised models will be instrumen- tal in accurately simulating the solids suspension in stirred tanks for a wide range of conditions. These models can be used in simulations to obtain precise results needed for an in-depth understanding of hydrodynamics in stirred tanks.