Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Althou...Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Although it is easy to get the residual by transformation matrix in static process, unfortunately, it becomes hard in dynamic process under control loop. Therefore, partial dynamic PCA(PDPCA) is proposed to obtain structured residual and enhance the isolation ability of dynamic process monitoring, and a compound statistic is introduced to resolve the problem resulting from independent variables in every variable subset. Simulations on continuous stirred tank reactor (CSTR) show the effectiveness of the proposed method.展开更多
In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor me...In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events;however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.展开更多
Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various fact...Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various factors. It is shown that there existis an obvious spatial and temporal variation in the main factors of water quality. Annual values of TP, CON, TN, Chl-a and conductivity decrease evidently from inner Meiliang Bay to the outer from north to south. TP and TN fluctuate seasonally with much higher value in winter. This is particularly true for the mouth of Liangxi River. In addition, the Chl-1 has a synchronous variation with water temperature, although being lagged a little, and closely relates to TP and TN. Finally, the results from Principal Component Analysis show that TP, TN, SS (or SD), water temperature and Chl-a are the most influential factors to water qualuty in this area, and both suspensions and algae can contribute to transparency to Taihu Lake.展开更多
The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The p...The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.展开更多
针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析(dynamic principal component analysis,DPCA)和最小二乘支持向量机(least square support vector machine,LSSVM)的飞机发动机润滑系统异常...针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析(dynamic principal component analysis,DPCA)和最小二乘支持向量机(least square support vector machine,LSSVM)的飞机发动机润滑系统异常状态识别方法;首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别;以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。展开更多
针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗...针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态;最后,利用基于变量贡献图的方法进行过程故障诊断分析.本文方法通过DPCA捕获过程的动态特征,同时互异度指标区别于传统的平方预测误差(Square prediction error,SPE),它可以有效地对具有自相关性的残差得分进行过程状态监控.通过一个数值例子和Tennessee Eastman(TE)过程的仿真实验并与传统方法对比分析,仿真结果进一步证实了本文方法的有效性.展开更多
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co...To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.展开更多
基金the National Natural Science Foundation of China (No.60421002).
文摘Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Although it is easy to get the residual by transformation matrix in static process, unfortunately, it becomes hard in dynamic process under control loop. Therefore, partial dynamic PCA(PDPCA) is proposed to obtain structured residual and enhance the isolation ability of dynamic process monitoring, and a compound statistic is introduced to resolve the problem resulting from independent variables in every variable subset. Simulations on continuous stirred tank reactor (CSTR) show the effectiveness of the proposed method.
文摘In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events;however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.
文摘Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various factors. It is shown that there existis an obvious spatial and temporal variation in the main factors of water quality. Annual values of TP, CON, TN, Chl-a and conductivity decrease evidently from inner Meiliang Bay to the outer from north to south. TP and TN fluctuate seasonally with much higher value in winter. This is particularly true for the mouth of Liangxi River. In addition, the Chl-1 has a synchronous variation with water temperature, although being lagged a little, and closely relates to TP and TN. Finally, the results from Principal Component Analysis show that TP, TN, SS (or SD), water temperature and Chl-a are the most influential factors to water qualuty in this area, and both suspensions and algae can contribute to transparency to Taihu Lake.
基金Supported by the National Natural Science Founda-tion of China (60132030)
文摘The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.
文摘针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析(dynamic principal component analysis,DPCA)和最小二乘支持向量机(least square support vector machine,LSSVM)的飞机发动机润滑系统异常状态识别方法;首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别;以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。
基金The National Natural Science Foundation of China(No.71471060)the Natural Science Foundation of Hebei Province(No.E2018502111)。
文摘To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.