Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel...Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.展开更多
By employing scanning probe microscopy,conductive path and local oxygen-vacancy dynamics have been investigated in crosshatched La_(0.7)Sr_(0.3)MnO_(3) thin films grown onto flat and vicinal LaAlO_(3)(001)single cryst...By employing scanning probe microscopy,conductive path and local oxygen-vacancy dynamics have been investigated in crosshatched La_(0.7)Sr_(0.3)MnO_(3) thin films grown onto flat and vicinal LaAlO_(3)(001)single crystal substrates.Consistent with prior studies,the crosshatch topography was observed first by dynamical force microscopy as the epi-stain started to release with increasing film thickness.Second,by using conductive atomic force microscopy(CAFM),conductive crosshatch and dots(locally aligned or random)were unravelled,however,not all of which necessarily coincided with that shown in the in situ atomic force microscopy.Furthermore,the current-voltage responses were probed by CAFM,revealing the occurrence of threshold and/or memristive switchings.Our results demonstrate that the resistive switching relies on the evolution of the local profile and concentration of oxygen vacancies,which,in the crosshatched films,are modulated by both the misfit and threading dislocations.展开更多
Rhenium diselenide(ReSe_(2))has gathered much attention due to its low symmetry of lattice structure,which makes it possess in-plane anisotropic optical,electrical as well as excitonic properties and further enables R...Rhenium diselenide(ReSe_(2))has gathered much attention due to its low symmetry of lattice structure,which makes it possess in-plane anisotropic optical,electrical as well as excitonic properties and further enables ReSe_(2)have an important application in optoelectronic devices.Here,we report the thickness-dependent exciton relaxation dynamics of mechanically exfoliated few-layer ReSe_(2)flakes by using time-resolved pump–probe transient transmission spectroscopies.The results reveal two thickness-dependent relaxation processes of the excitons.The fast one correlates with the exciton formation(i.e.,the conversion of hot carriers to excitons),while the slow one is attributed to the exciton recombination dominated by defect-assisted exciton trapping besides photon emission channel.The decrease of scattering probability caused by defects leads to the increase of fast lifetime with thickness,and the increase of slow lifetime with thickness is related to the trap-mediated exciton depopulation induced by surface defects.Polarization-dependent transient spectroscopy indicates the isotropic exciton dynamics in the two-dimensional(2D)plane.These results are insightful for better understanding of excitonic dynamics of ReSe_(2)materials and its application in future optoelectronic and electronic devices.展开更多
As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring...As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture展开更多
The present paper covers the response dynamics of a gas-sensing membrane probe, which is described by the dynamic differential equation based upon a steady-state diffusion process. The theoretical results indicate tha...The present paper covers the response dynamics of a gas-sensing membrane probe, which is described by the dynamic differential equation based upon a steady-state diffusion process. The theoretical results indicate that the response time is dependent upon membrane properties, membrane geometry, internal electrolyte composition, the dissociation constant of the conjugate reaction, the initial gas concentration in the internal electrolyte, and the gas concentration in the evaluation sample. The theoretical prediction is in good agreement with the experimental result. A method for determining a gas-sensing probe' s dynamic parameter is proposed in this paper also.展开更多
In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which ta...In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.展开更多
In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and...In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and compensated for by the adaptive method without extra sensors on dredging equipment,and the control mechanism is simplified.Adaptive control is used to compensate for the reaction and environmental disturbances on the dredger,so the dredger can maintain the desired position with a minimum error and shock.The proposed adaptive robust controller guarantees the global asymptotic stability of the closed-loop system and rapid position tracking of the dredger.The simulation results show that the proposed controller has superior performance in position tracking and robustness to large disturbances.展开更多
Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicabi...Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.展开更多
A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource...A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource requests for both instant and future needs. The considered framework can handle two types of reservations(i.e., specified and unspecified time interval reservation requests), and implement an overbooking business strategy to further increase business revenues. The resulting dynamic pricing problems can be regarded as sequential decision-making problems under uncertainty, which is solved by means of stochastic dynamic programming(DP) based algorithms. In this regard, Bellman’s backward principle of optimality is exploited in order to provide all the implementation mechanisms for the proposed reservation pricing algorithm. The curse of dimensionality, as the inevitable issue of the DP both for instant resource requests and future resource reservations,occurs. In particular, an approximate dynamic programming(ADP) technique based on linear function approximations is applied to solve such scalability issues. Several examples are provided to show the effectiveness of the proposed approach.展开更多
In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow...In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP.展开更多
Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+)...Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+) and main daughter ion (CH2Cl+) are obtained. The curve for the transient signal of CH2ICl+ is simple and can be well fitted by an exponential decay convoluted with a Gaussian function. The decay constant determined to be less than 35 fs reflects the lifetime of the B band. Significant substituent effects on photodissociation dynamics of CH2IC1 compared with CH3I are discussed. The dissociation time from the parent ion CH2IC1+ to the daughter ion CH2Cl+ is determined in the experiment. The optimized geometry of the ionic state of CH2ICl and the ionization energy are calculated for further analysis of the measurements. In addition, compared with the parent ion, a new decay component with time constant of -596 fs is observed for CH2Cl+, and reasonable mechanisms are proposed for the explanation.展开更多
A method to measure temporal and spatial evolution of sheath in plasma immersion ion implantation (PIII) process is presented. A long Langmuir probe (Ф5 mm× Ф78 mm) with low bias is used to detect the sheat...A method to measure temporal and spatial evolution of sheath in plasma immersion ion implantation (PIII) process is presented. A long Langmuir probe (Ф5 mm× Ф78 mm) with low bias is used to detect the sheath propagation and backup with time. The substrate made of A1 cylinder (Ф 20 mm×Ф 150 mm) is immersed in nitrogen and argon plasma induced by magnetron self-sustained discharge. The maximum sheath sizes, at different plasma densities under different discharge currents, are measured and compared.展开更多
Dynamic programming(DP) is an effective query optimization approach to select an appropriate join order for relational database management system(RDBMS) in multi-table joins. This method was extended and made availabl...Dynamic programming(DP) is an effective query optimization approach to select an appropriate join order for relational database management system(RDBMS) in multi-table joins. This method was extended and made available in distributed DBMS(D-DBMS). The structure of this optimal solution was firstly characterized according to the distributing status of tables and data, and then the recurrence relations between a problem and its sub-problems were recursively defined. DP in D-DBMS has the same time-complexity with that in centralized DBMS, while it has the capability to solve a much more sophisticated optimal problem of multi-table join in D-DBMS. The effectiveness of this optimal strategy has been proved by experiments.展开更多
The S_(1) state decay dynamics of 2-hydroxypyridine following UV excitation at a wavelength range of 276.9-250.0 nm is investigated using femtosecond time-resolved photoelectron imaging technique.Based on pump wavelen...The S_(1) state decay dynamics of 2-hydroxypyridine following UV excitation at a wavelength range of 276.9-250.0 nm is investigated using femtosecond time-resolved photoelectron imaging technique.Based on pump wavelength dependence of the decay dynamics,a refined decay picture is proposed.At pump wavelength of 276.9 nm,the S_(1) state is depopulated through intersystem crossing to lower triplet state(s).At 264.0 nm,both intersystem crossing to lower triplet state(s)and internal conversion to the ground state are in operation.At 250.0 nm,internal conversion to the ground state becomes dominated.展开更多
In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom...In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60°C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes.展开更多
We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon ...We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.展开更多
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere...In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.展开更多
基金the National Natural Science Foundation of China(No.62173049)the Open Fund of the Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.
基金funded by the Science Center of the National Science Foundation of China(Grant No.52088101)the National Natural Science Foundation of China(Grant Nos.11474342 and11174353)+2 种基金the National Key Research and Development Program of Chinathe Strategic Priority Research Program B of the Chinese Academy of Sciencessupported in part by the beamline 08U1A of SSRF。
文摘By employing scanning probe microscopy,conductive path and local oxygen-vacancy dynamics have been investigated in crosshatched La_(0.7)Sr_(0.3)MnO_(3) thin films grown onto flat and vicinal LaAlO_(3)(001)single crystal substrates.Consistent with prior studies,the crosshatch topography was observed first by dynamical force microscopy as the epi-stain started to release with increasing film thickness.Second,by using conductive atomic force microscopy(CAFM),conductive crosshatch and dots(locally aligned or random)were unravelled,however,not all of which necessarily coincided with that shown in the in situ atomic force microscopy.Furthermore,the current-voltage responses were probed by CAFM,revealing the occurrence of threshold and/or memristive switchings.Our results demonstrate that the resistive switching relies on the evolution of the local profile and concentration of oxygen vacancies,which,in the crosshatched films,are modulated by both the misfit and threading dislocations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074202,12174207,and 11974190)the Natural Science Foundation of Tianjin City(Grant Nos.20JCQNJC00020 and 22JCYBJC00390)。
文摘Rhenium diselenide(ReSe_(2))has gathered much attention due to its low symmetry of lattice structure,which makes it possess in-plane anisotropic optical,electrical as well as excitonic properties and further enables ReSe_(2)have an important application in optoelectronic devices.Here,we report the thickness-dependent exciton relaxation dynamics of mechanically exfoliated few-layer ReSe_(2)flakes by using time-resolved pump–probe transient transmission spectroscopies.The results reveal two thickness-dependent relaxation processes of the excitons.The fast one correlates with the exciton formation(i.e.,the conversion of hot carriers to excitons),while the slow one is attributed to the exciton recombination dominated by defect-assisted exciton trapping besides photon emission channel.The decrease of scattering probability caused by defects leads to the increase of fast lifetime with thickness,and the increase of slow lifetime with thickness is related to the trap-mediated exciton depopulation induced by surface defects.Polarization-dependent transient spectroscopy indicates the isotropic exciton dynamics in the two-dimensional(2D)plane.These results are insightful for better understanding of excitonic dynamics of ReSe_(2)materials and its application in future optoelectronic and electronic devices.
基金supported by the National Natural Science Foundation of China (Grant No. 50909025)the National High Technology Development Program of China (Grant No. 2008AA092301)
文摘As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture
文摘The present paper covers the response dynamics of a gas-sensing membrane probe, which is described by the dynamic differential equation based upon a steady-state diffusion process. The theoretical results indicate that the response time is dependent upon membrane properties, membrane geometry, internal electrolyte composition, the dissociation constant of the conjugate reaction, the initial gas concentration in the internal electrolyte, and the gas concentration in the evaluation sample. The theoretical prediction is in good agreement with the experimental result. A method for determining a gas-sensing probe' s dynamic parameter is proposed in this paper also.
基金Supported by the National Natural Science Foundation of China(91216201,11725211)
文摘In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.
基金The National Basic Research Program of China (973 Program) (No. 2005CB221505)Open Fund of Provincial Open Laboratory for Control Engineering Key Disciplines (No. KG2009-02)
文摘In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and compensated for by the adaptive method without extra sensors on dredging equipment,and the control mechanism is simplified.Adaptive control is used to compensate for the reaction and environmental disturbances on the dredger,so the dredger can maintain the desired position with a minimum error and shock.The proposed adaptive robust controller guarantees the global asymptotic stability of the closed-loop system and rapid position tracking of the dredger.The simulation results show that the proposed controller has superior performance in position tracking and robustness to large disturbances.
基金supported by the National Natural Science Foundation of China(91648204 61601486)+1 种基金State Key Laboratory of High Performance Computing Project Fund(1502-02)Research Programs of National University of Defense Technology(ZDYYJCYJ140601)
文摘Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.
文摘A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource requests for both instant and future needs. The considered framework can handle two types of reservations(i.e., specified and unspecified time interval reservation requests), and implement an overbooking business strategy to further increase business revenues. The resulting dynamic pricing problems can be regarded as sequential decision-making problems under uncertainty, which is solved by means of stochastic dynamic programming(DP) based algorithms. In this regard, Bellman’s backward principle of optimality is exploited in order to provide all the implementation mechanisms for the proposed reservation pricing algorithm. The curse of dimensionality, as the inevitable issue of the DP both for instant resource requests and future resource reservations,occurs. In particular, an approximate dynamic programming(ADP) technique based on linear function approximations is applied to solve such scalability issues. Several examples are provided to show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.41974139,41504104,11572220,51527805)Natural Science Foundation of Tianjin,China(19JCYBJC18400)。
文摘In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304157,21303255 and 11475229the‘Six Talent Peaks’Project in Jiangsu Province under Grant No 2015-JNHB-011the College Students Practice Innovative Training Program of Nuist under Grant No 201610300042
文摘Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+) and main daughter ion (CH2Cl+) are obtained. The curve for the transient signal of CH2ICl+ is simple and can be well fitted by an exponential decay convoluted with a Gaussian function. The decay constant determined to be less than 35 fs reflects the lifetime of the B band. Significant substituent effects on photodissociation dynamics of CH2IC1 compared with CH3I are discussed. The dissociation time from the parent ion CH2IC1+ to the daughter ion CH2Cl+ is determined in the experiment. The optimized geometry of the ionic state of CH2ICl and the ionization energy are calculated for further analysis of the measurements. In addition, compared with the parent ion, a new decay component with time constant of -596 fs is observed for CH2Cl+, and reasonable mechanisms are proposed for the explanation.
基金High Energy Density Beam Processing Key Laboratory Foundation of China(No.9140C45020106)
文摘A method to measure temporal and spatial evolution of sheath in plasma immersion ion implantation (PIII) process is presented. A long Langmuir probe (Ф5 mm× Ф78 mm) with low bias is used to detect the sheath propagation and backup with time. The substrate made of A1 cylinder (Ф 20 mm×Ф 150 mm) is immersed in nitrogen and argon plasma induced by magnetron self-sustained discharge. The maximum sheath sizes, at different plasma densities under different discharge currents, are measured and compared.
文摘Dynamic programming(DP) is an effective query optimization approach to select an appropriate join order for relational database management system(RDBMS) in multi-table joins. This method was extended and made available in distributed DBMS(D-DBMS). The structure of this optimal solution was firstly characterized according to the distributing status of tables and data, and then the recurrence relations between a problem and its sub-problems were recursively defined. DP in D-DBMS has the same time-complexity with that in centralized DBMS, while it has the capability to solve a much more sophisticated optimal problem of multi-table join in D-DBMS. The effectiveness of this optimal strategy has been proved by experiments.
基金supported by the National Natural Science Foundation of China(No.21833003)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17000000)the Key Technology Team of the Chinese Academy of Sciences(GJJSTD20190002)。
文摘The S_(1) state decay dynamics of 2-hydroxypyridine following UV excitation at a wavelength range of 276.9-250.0 nm is investigated using femtosecond time-resolved photoelectron imaging technique.Based on pump wavelength dependence of the decay dynamics,a refined decay picture is proposed.At pump wavelength of 276.9 nm,the S_(1) state is depopulated through intersystem crossing to lower triplet state(s).At 264.0 nm,both intersystem crossing to lower triplet state(s)and internal conversion to the ground state are in operation.At 250.0 nm,internal conversion to the ground state becomes dominated.
文摘In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60°C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922404the National Natural Science Foundation of China under Grant Nos 11474040 11274053,11474039 and 61178022the Project under Grant No 14KP007
文摘We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.
基金supported by the National Natural Science Foundation of China,No.81730050(to WH).
文摘In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.