A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid el...A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.展开更多
The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dyn...The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.展开更多
The optimization of the control strategy of a plug-in hybrid electric bus(PHEB) for the repeatedly driven bus route is a key technique to improve the fuel economy. The widely used rule-based(RB) control strategy is la...The optimization of the control strategy of a plug-in hybrid electric bus(PHEB) for the repeatedly driven bus route is a key technique to improve the fuel economy. The widely used rule-based(RB) control strategy is lacking in the global optimization property, while the global optimization algorithms have an unacceptable computation complexity for real-time application. Therefore, a novel hybrid dynamic programming-rule based(DPRB) algorithm is brought forward to solve the global energy optimization problem in a real-time controller of PHEB. Firstly, a control grid is built up for a given typical city bus route, according to the station locations and discrete levels of battery state of charge(SOC). Moreover, the decision variables for the energy optimization at each point of the control grid might be deduced from an off-line dynamic programming(DP) with the historical running information of the driving cycle. Meanwhile, the genetic algorithm(GA) is adopted to replace the quantization process of DP permissible control set to reduce the computation burden. Secondly, with the optimized decision variables as control parameters according to the position and battery SOC of a PHEB, a RB control is used as an implementable controller for the energy management. Simulation results demonstrate that the proposed DPRB might distribute electric energy more reasonably throughout the bus route, compared with the optimized RB. The proposed hybrid algorithm might give a practicable solution, which is a tradeoff between the applicability of RB and the global optimization property of DP.展开更多
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优...为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优化调度模型。采用参数化代价函数近似(parametric cost function approximation,PCFA)的动态规划算法求解随机优化调度模型。通过一种基于梯度下降的求解方法--Adadelta法,获得策略函数的一阶信息,并计算梯度平方的指数衰减平均值,以更新策略函数的迭代步长;对随机优化调度模型进行策略参数逼近,从而得到近似最优的策略参数,并逐一时段求解出CIEPU的最优调度计划。最后,以某个CIEPU为例,分析计算结果表明,所提出方法获得的优化调度方案可以提高CIEPU运行的经济性并降低碳排放量,验证了所提方法的准确性和高效性。展开更多
The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime...The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime of a reliability system with sub- systems consisting of components in parallel. The constraints are minimizing the total resources and the sizes of subsystems. In this system, each switching is independent with each other and works with probability p. Two optimization problems are studied by an incremental algorithm and dynamic programming technique respectively. The incremental algorithm proposed could obtain an approximate optimal solution, and the dynamic programming method could generate the optimal solution,展开更多
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant Nos.172102210124,202102210269the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.
文摘The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.
基金supported by the National Natural Science Foundation of China(Grant No.51275557,5142505)the National Science-Technology Support Plan Projects of China(Grant No.2013BAG14B01)
文摘The optimization of the control strategy of a plug-in hybrid electric bus(PHEB) for the repeatedly driven bus route is a key technique to improve the fuel economy. The widely used rule-based(RB) control strategy is lacking in the global optimization property, while the global optimization algorithms have an unacceptable computation complexity for real-time application. Therefore, a novel hybrid dynamic programming-rule based(DPRB) algorithm is brought forward to solve the global energy optimization problem in a real-time controller of PHEB. Firstly, a control grid is built up for a given typical city bus route, according to the station locations and discrete levels of battery state of charge(SOC). Moreover, the decision variables for the energy optimization at each point of the control grid might be deduced from an off-line dynamic programming(DP) with the historical running information of the driving cycle. Meanwhile, the genetic algorithm(GA) is adopted to replace the quantization process of DP permissible control set to reduce the computation burden. Secondly, with the optimized decision variables as control parameters according to the position and battery SOC of a PHEB, a RB control is used as an implementable controller for the energy management. Simulation results demonstrate that the proposed DPRB might distribute electric energy more reasonably throughout the bus route, compared with the optimized RB. The proposed hybrid algorithm might give a practicable solution, which is a tradeoff between the applicability of RB and the global optimization property of DP.
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
文摘为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优化调度模型。采用参数化代价函数近似(parametric cost function approximation,PCFA)的动态规划算法求解随机优化调度模型。通过一种基于梯度下降的求解方法--Adadelta法,获得策略函数的一阶信息,并计算梯度平方的指数衰减平均值,以更新策略函数的迭代步长;对随机优化调度模型进行策略参数逼近,从而得到近似最优的策略参数,并逐一时段求解出CIEPU的最优调度计划。最后,以某个CIEPU为例,分析计算结果表明,所提出方法获得的优化调度方案可以提高CIEPU运行的经济性并降低碳排放量,验证了所提方法的准确性和高效性。
基金supported by the National Natural Science Foundation of China(7117217271101158+3 种基金71272058)the Program for New Century Excellent Talents in University(NCET-10-0043)the Key Project Cultivation Fund of the Scientific and Technical Innovation Program of Beijing Institute of Technology(2011CX01001)the Special Fund of International Science and Technology Cooperation Program of Beijing Institute of Technology(GZ2014215101)
文摘The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime of a reliability system with sub- systems consisting of components in parallel. The constraints are minimizing the total resources and the sizes of subsystems. In this system, each switching is independent with each other and works with probability p. Two optimization problems are studied by an incremental algorithm and dynamic programming technique respectively. The incremental algorithm proposed could obtain an approximate optimal solution, and the dynamic programming method could generate the optimal solution,
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.