期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Dynamic response analysis of liquefiable ground due to sinusoidal waves of different frequencies of shield construction
1
作者 Wang Jingyue Ge Xinsheng +4 位作者 Sun Jingyuan Liu Yasheng Shang Zhuo Wang Zhiqiang Tian Maoguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期637-646,共10页
Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequenci... Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequencies are applied to the excavation face.The pattern of the excess pore pressure ratio with frequency,as well as the dynamic response of soil mass under different frequency loads before excavation,is analyzed.When the velocity sinusoidal wave acts on the excavation surface of the shield tunnel with a single sand layer,soil liquefaction occurs.However,the ranges and locations of soil liquefaction are different at different frequencies,which proves that the vibration frequency influences the liquefaction location of the stratum.For sand-clay composite strata with liquefiable layers,the influence of frequency on the liquefaction range is different from that of a single stratum.In the frequency range of 5-30 Hz,the liquefaction area and surface subsidence decrease with an increase in vibration frequency.The research results in this study can be used as a reference in engineering practice for tunneling liquefiable strata with a shield tunneling machine. 展开更多
关键词 shield tunnel liquefiable formation FLAC3D numerical simulation excess pore pressure ratio dynamic response analysis
下载PDF
An Arbitrary Polygonal Stress Hybrid Element for Structural Dynamic Response Analysis
2
作者 Xin Zeng Ran Guo Lihui Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第5期692-701,共10页
This paper constructs a new two-dimensional arbitrary polygonal stress hybrid dynamic(APSHD)element for structural dynamic response analysis.Firstly,the energy function is established based on Hamilton's principle... This paper constructs a new two-dimensional arbitrary polygonal stress hybrid dynamic(APSHD)element for structural dynamic response analysis.Firstly,the energy function is established based on Hamilton's principle.Then,the finite element time-space discrete format is constructed using the generalized variational principle and the direct integration method.Finally,an explicit polynomial form of the combined stress solution is give,and its derivation process is shown in detail.After completing the theoretical construction,the numerical calculation program of the APSHD element is written in Fortran,and samples are verified.Models show that the APSHD element performs well in accuracy and convergence.Furthermore,it is insensitive to mesh distortion and has low dependence on selecting time steps. 展开更多
关键词 Stress hybrid element method Arbitrary polygonal element dynamic response analysis Polynomial stress function solution
原文传递
Structural dynamic responses analysis applying differential quadrature method 被引量:5
3
作者 PU Jun-ping ZHENG Jian-jun 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1831-1838,共8页
Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, com... Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation. 展开更多
关键词 Differential quadrature method (DQM) dynamic response analysis Conservation of energy
下载PDF
A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems 被引量:3
4
作者 LIU ZhuangZhuang WANG TianShu LI JunFeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第4期45-57,共13页
This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.Thi... This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.This method provides tighter solution ranges compared to the existing approximation interval methods.We consider trigonometric approximation polynomials of three types:both cosine and sine functions,the sine function,and the cosine function.Thus,special interval arithmetic for trigonometric function without overestimation can be used to obtain interval results.The interval method using trigonometric approximation polynomials with a cosine functional form exhibits better performance than the existing Taylor interval method and Chebyshev interval method.Finally,two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed method. 展开更多
关键词 non-intrusive interval method dynamic response analysis uncertain nonlinear systems trigonometric polynomial ap-proximation interval arithmetic
原文传递
Parametrical analysis of the railways dynamic response at high speed moving loads 被引量:2
5
作者 Michele Agostinacchio Donato Ciampa +1 位作者 Maurizio Diomedi Saverio Olita 《Journal of Modern Transportation》 2013年第3期169-181,共13页
The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was c... The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy. 展开更多
关键词 Railways dynamic response High velocity.Sensitivity analysis
下载PDF
The dynamical and thermodynamical analysis of the oceanic response to storm
6
作者 Zhang Huaishui(Received January 15, 1990, accepted September 15, 1990) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1991年第2期229-236,共8页
In this paper, the discussion is made on the problem of the oceanic response caused by air-sea interaction under storm. First, the perturbation differential equations for the problem are given, and the interaction fun... In this paper, the discussion is made on the problem of the oceanic response caused by air-sea interaction under storm. First, the perturbation differential equations for the problem are given, and the interaction functions are supposed to be the solving conditions. Next, the nonlinear diffusion equations of the problem are solved by using the method of the given variable transforms and the specific variable power series. Finally, the response disturbances to the circular intense storm is calculated so as to discribe quantitatively the evolution processes of the oceanic response. 展开更多
关键词 The dynamical and thermodynamical analysis of the oceanic response to storm
下载PDF
An explicit finite element method for dynamic analysis in three-medium coupling system and its application
7
作者 赵成刚 李伟华 +1 位作者 王进廷 李亮 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期272-282,共11页
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ... In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given. 展开更多
关键词 fluid saturated porous medium-elastic single-phase medium-ideal fluid medium coupled system dynamic response analysis explicit finite element method
下载PDF
Numerical Simulation of Dynamic Response of an Existing Subway Station Subjected to Internal Blast Loading 被引量:2
8
作者 胡秋韵 禹海涛 袁勇 《Transactions of Tianjin University》 EI CAS 2008年第B10期563-568,共6页
In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behavior of a typical su... In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behavior of a typical subway station subjected to different internal blast Ioadings was analyzed. It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station. Then three cases of different explosive charges were consid- ered to analyze the dynamic responses of the structure. Finally, the maximum principal stress, dis- placement and velocity of the columns in the three cases were obtained and discussed. It con- cluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation. It's also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer. The explicit dynamic nonlinear finite element software ANSYS/LS-DYNA was used in this study. 展开更多
关键词 internal blast loading subway station numerical analysis dynamic response
下载PDF
Nonlinear dynamic response of beam and its application in nanomechanical resonator 被引量:3
9
作者 Yin Zhang Yun Liu Kevin D.Murphy 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期190-200,共11页
Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application. Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed. The dynamic non... Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application. Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed. The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach. The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity, its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects. However, for the nanomechanical resonator of the curvature-dominant nonlinearity, its dynamic nonlinearity is only dependent on axial loading. Compared with the tension-dominant nonlinearity, the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity 展开更多
关键词 Resonator. dynamic response. dynamic nonlinearity - Dimensional analysis
下载PDF
Study on Model Tests and Hydrodynamic Force Models for Free Spanning Submarine Pipelines Subjected to Earthquakes 被引量:3
10
作者 李明高 李昕 +2 位作者 董汝博 周晶 关炯 《China Ocean Engineering》 SCIE EI 2010年第2期305-320,共16页
A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model ... A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes. 展开更多
关键词 free spanning submarine pipelines model tests hydrodynamic force models dynamic response analysis earthquke
下载PDF
Stochastic Finite Element Analysis of Plate and Shell Construction
11
作者 雷震宇 陈虬 《Journal of Modern Transportation》 2000年第1期45-50,共6页
The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simpl... The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS). 展开更多
关键词 random plate and shell construction stochastic finite element method static analysis dynamic response
下载PDF
Non-intrusive hybrid interval method for uncertain nonlinear systems using derivative information 被引量:1
12
作者 Zhuang-Zhuang Liu Tian-ShuWang Jun-Feng Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期170-180,共11页
This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This... This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing polynomial approximation interval methods. Interval arith- metic using the Chebyshev basis and interval arithmetic using the general form modified affine basis for polynomials are developed to obtain tighter bounds for interval computation. To further reduce the overestimation caused by the "wrap- ping effect" of interval arithmetic, the derivative information of dynamic responses is used to achieve exact solutions when the dynamic responses are monotonic with respect to all the uncertain variables. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effective- ness of the proposed hybrid interval method, in particular, its ability to effectively control the overestimation for specific timepoints. 展开更多
关键词 Non-intrusive hybrid interval method dynamic response analysis Uncertain nonlinear systems Polynomial approximation Interval arithmetic Derivative information
下载PDF
Simulation of Sliding Failure Occurred at Highway Embankment in 2011 Great East Japan Earthquake
13
作者 Ken-ichi Tokida Kouki Murakami Aino Tachibana 《Journal of Civil Engineering and Architecture》 2013年第1期27-38,共12页
In the 2011 Great East Japan Earthquake, the highway embankments were almost less damaged comparing with the past earthquakes in Japan. But the only one embankment close to the Naka Interchange at Joban Highway was da... In the 2011 Great East Japan Earthquake, the highway embankments were almost less damaged comparing with the past earthquakes in Japan. But the only one embankment close to the Naka Interchange at Joban Highway was damaged a little severely and remarkably because of two interesting phenomena. One phenomenon is the toe-sliding failure observed at the shallow soft base ground and the other one is one-side slope sliding failure. It can be seen that the increase in the degree of saturation at embankment body or the direction of the ground motion or the interaction between the strength of the base ground and the embankment body are involved in the stability of the embankment by modifying the phenomenon by analytical approach such as circular sliding method and dynamic response analysis. Through this research, some important lessons can be obtained for future seismic countermeasure of embankments. 展开更多
关键词 Highway embankment circular sliding method dynamic response analysis.
下载PDF
Seismic performances of dyke on liquefiable soils 被引量:1
14
作者 Mingwu Wang Guangyi Chen Susumu Iai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期294-305,共12页
Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of gre... Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of great importance.In this paper,seismic responses of dyke on liquefiable soils were investigated by means of dynamic centrifuge model tests and three-dimensional(3D) effective stress analysis method which is based on a multiple shear mechanism model and a liquefaction front.For the prototype scale centrifuge tests,sine wave input motions with peak accelerations 0.806 m/s2,1.790 m/s2 and 3.133 m/s2 of varied amplitudes were adopted to study the seismic performances of dyke on the saturated soil layer foundation with relative density of approximately 30%.Then,corresponding numerical simulations were conducted to investigate the distribution and variations of deformation,acceleration,excess pore-water pressure(EPWP),and behaviors of shear dilatancy in the dyke and the liquefiable soil foundation.Moreover,detailed discussions and comparisons between numerical simulations and centrifuge tests were also presented.It is concluded that the computed results have a good agreement with the measured results by centrifuge tests.The physical and numerical models both indicate that the dyke hosted on liquefiable soils subjected to earthquake motions has exhibited larger settlement and lateral spread:the stronger the motion is,the larger the dyke deformation is.Compared to soils in the deep ground under the dyke and the free field,the EPWP ratio is much smaller in the shallow liquefiable soil beneath the dyke in spite of large deformation produced.For the same overburden depth soil from free site and the liquefiable foundation beneath dyke,the characteristics of effective stress path and stress-strain relations are different.All these results may be of theoretical and practical significance for seismic design of the dyke on liquefiable soils. 展开更多
关键词 Dyke dynamic centrifuge test Effective stress analysis Liquefaction Seismic design Seismic responses
下载PDF
Distribution of acceleration and empirical formula for calculating maximum acceleration of rockfill dams
15
作者 周晖 李俊杰 康飞 《Journal of Central South University》 SCIE EI CAS 2010年第3期642-647,共6页
To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valle... To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valley were analyzed by using the equivalent-linear model. Statistical analysis was also made to the seismic coefficient, and an empirical formula for calculating the maximum acceleration was provided. The results indicate that under the condition of the same dam height and the same base acceleration excitations, with the increase of the river valley width, the position of the maximum acceleration on the axis of the top of the dam moves from the center to the riversides symmetrically. For the narrow valleys, the maximum acceleration occurs in the middle of the axis at the top of the dam; for wide valleys the maximum acceleration appears near the riversides. The result negates the application of 2D dynamical computation for wide valleys, and shows that for the seismic response of high concrete-faced rockfill dams, the seismic coefficient along the axis should be given, except for that along the dam height. Seismic stability analysis of rockfill dams using pseudo-static method can be modified according to the formula. 展开更多
关键词 concrete-faced rockfill dam 3D dynamical response analysis equivalent-linear method ACCELERATION seismic coefficient statistical analysis
下载PDF
Quantitative Method of the Structural Damage Identification of Gas Explosion Based on Case Study:The Shanxi “11. 23” Explosion Investigation
16
作者 Huanjuan Zhao Yiran Yan Xinming Qian 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期1-14,共14页
In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquef... In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquefied petroleum gas; nature gas) and computed their concentrations and distributions based on the interactions between the structures and the effects of the explosion. In this study,5 scenarios were created to analyze the impact effect. Moreover,a coupling algorithm was put into practice,with a practical outflow boundary and joint strength are applied. Finally,the damage effects of each scenario were simulated. Our experimental results showed significant differences in the 5 scenarios concerning the damage effects on the building structures. The results from scenario 3 agree with the accident characteristics,demonstrating the effectiveness of our proposed modeling method. Our proposed method reflects gas properties,species and the concentration and distribution,and the simulated results validates the root cause,process,and consequences of accidental explosions. Furthermore,this method describes the evolution process of explosions in different building structures. Significantly,our model demonstrates the quantatative explosion effect of factors like gas species,gas volumes,and distributions of gases on explosion results. In this study,a feasible,effective,and quantitative method for structure safety is defined,which is helpful to accelerate the development of safer site regulations. 展开更多
关键词 mechanics of explosion simulation dynamic response liquefied petroleum gas nature gas quantitative analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部