期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic Accuracy Design Method of Ultra-precision Machine Tool 被引量:3
1
作者 Guo-Da Chen Ya-Zhou Sun +3 位作者 Fei-Hu Zhang Li-Hua Lu Wan-Qun Chen Nan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable... Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool. 展开更多
关键词 dynamic accuracy design Ultra-precision machine tool Frequency domain Error allocation
下载PDF
Dynamic Accuracy Analysis of a 5PSS/UPU Parallel Mechanism Based on Rigid-Flexible Coupled Modeling 被引量:2
2
作者 Yanbiao Li Zesheng Wang +2 位作者 Chaoqun Chen Taotao Xu Bo Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期77-90,共14页
In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,takin... In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,taking a 5-prismatic-spherical-spherical(PSS)/universal-prismatic-universal(UPU)parallel mechanism as an example,the error model is established by a closed vector chain method,while its influence on the dynamic accuracy of the parallel mechanism is analyzed through numerical simulation.According to the structural and error characteristics of the parallel mechanism,a vector calibration algorithm is proposed to reduce the position and pose errors along the whole motion trajectory.Then,considering the elastic deformation of the rod,the rigid-flexible coupling dynamic equations of each component are established by combining the finite element method with the Lagrange method.The elastodynamic model of the whole machine is obtained based on the constraint condition of each moving part,and the correctness of the model is verified by simulation.Moreover,the effect of component flexibility on the dimensionless root mean square error of the displacement,velocity and acceleration of the moving platform is investigated by using a Newmark method,and the mapping relationship of these dimensionless root mean square errors to dynamic accuracy is further studied.The research work provides a theoretical basis for the design of the parameter size of the prototype. 展开更多
关键词 Parallel mechanism Geometric error Calibration algorithm Elastodynamic model dynamic accuracy
下载PDF
Dynamic synchronous motion accuracy measurement and estimation for a five-axis mirror milling system
3
作者 XU Kun TANG XinYu +3 位作者 BI QingZhen YU YangBo QIAN DeHou JI YuLei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第3期689-705,共17页
A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the... A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the cutting process,synchronous motion accuracy is the key index of the MMS.This paper proposed a novel method for measuring and estimating the synchronous motion accuracy of the dual five-axis machine tools.The method simultaneously detects errors in the tool center point(TCP)and tool axis direction(TAD)during synchronous motion.To implement the suggested method,a measurement device,with five high-precision displacement sensors was developed.A kinematic model was then developed to estimate the synchronous motion accuracy from the displacement sensor output.The screw theory was used to obtain the analytical expression of the inverse kinematic model,and the synchronous motion error was compensated and adjusted based on the inverse kinematic model of the dual five-axis machine tools.TCP and TAD quasi-static errors,such as geometric and backlash errors,were first compensated.By adjusting the servo parameters,the dynamic TCP and TAD errors,such as gain mismatch and reversal spike,were also reduced.The proposed method and device were tested in a large MMS,and the measured quasi-static and dynamic errors were all reduced when the compensation and adjustment method was used.Monte Carlo simulations were also used to estimate the uncertainty of the proposed scheme. 展开更多
关键词 mirror milling synchronous motion error five-axis machine tool MEASUREMENT dynamic accuracy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部