The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares th...The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.展开更多
Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable predic...Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC.This study presents the application of artificial neural networks(ANNs) for a priori prediction of the effectiveness of RDC.The models are trained with in situ dynamic cone penetration(DCP) test data obtained from previous civil projects associated with the 4-sided impact roller.The predictions from the ANN models are in good agreement with the measured field data,as indicated by the model correlation coefficient of approximately 0.8.It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types.展开更多
The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and miti...The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densitication during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils.展开更多
Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic comp...Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement,however, these parameters are not studied for improvement adjacent to the slopes or trenches. In thisresearch, four different slopes with different inclinations are modeled numerically using the finiteelement code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safetyare kept similar for all trenches and determined numerically by application of gravity loads to the slopeusing strength reduction method (SRM). The analysis focuses on crater depth and improvement regionwhich are compared to the state of flat ground. It can be observed that compacted area adjacent to theslopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depthincreases with increase in slope inclination.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement e...The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement effect of the QarharvaTrolmud Highway, Qinghai Province, China, dynamic compaction replacement (DCR) composite foundation was applied in saline soils. A field experiment was conducted in this area, where strength and working mechanism of pier-soil and deformation modulus of the composite foundation was analyzed after reinforcement. This paper presents methods for determining the coefficient on the bearing capacity evaluation and deformation modulus of composite foundation with DC1L Reinforcement case of DCR is highly effective in saline soils of the salt lake regions, which helps the mi-tion of water and salt in saline soils.展开更多
Melt shrinkage, salt bulge, and corrosiveness are common problems with saline soils, which damage highway foundations and cause huge financial losses. In order to improve the saline soil subgrade, dynamic compaction ...Melt shrinkage, salt bulge, and corrosiveness are common problems with saline soils, which damage highway foundations and cause huge financial losses. In order to improve the saline soil subgrade, dynamic compaction (DC) and rolling compaction (RC) technology were applied on the Qarhan-Golmud Highway in Qinghai Province, China. A field experi- ment was conducted in which shear strength, deformation modulus, and the working mechanism of the composite foun- dation were analyzed after reinforcement. Both the DC and RC methods were found to be effective and helped to improve the foundation strength of saline soils, although the ultimate bearing capacity and deformation modulus of the RC method were lower than that of the DC method.展开更多
The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and an...The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.展开更多
We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase ...We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase shift and contrast of the interference fringe are experimentally investigated. The results show that the contrast of the interference fringe is well held when the platform is rotated, and the phase shift of the interference fringe is linearly proportional to the rotation rate of the platform. The long-term stability, which is evaluated by the overlapped Allan deviation, is 8.5 × 10^-6 rad/s over the integrating time of 1000s.展开更多
A highway in the floodplain of the Abandoned Yellow River in the north of Jiangsu Province is recently remediated to reduce liquefaction potential using the dynamic compaction(DC)method of densification of in-place so...A highway in the floodplain of the Abandoned Yellow River in the north of Jiangsu Province is recently remediated to reduce liquefaction potential using the dynamic compaction(DC)method of densification of in-place soils.Firstly,the liquefaction potential of the soil at the project site is analysed according to the code of seismic design.Then the in-situ single point impact tests are performed on the liquefiable soil.Settlement of crater,excess pore pressure,ground heave and lateral deformation under DC impact are measured and analyzed.Subsequently, the standard penetration test(SPT)and cone penetration test(CPT)are used for investigating the compaction effectiveness.At last,the improvement effect of DC is discussed according to the technical specification of dynamic consolidation to ground treatment.The investigation results indicate that the DC technique is an effective way for remediating liquefiable soil in highway engineering practice.展开更多
For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the imp...For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the improved projection algorithm to approach the controlled nonlinear system.Then,on the basis of the estimation model,a predictive controller is designed by solving the finite time domain rolling optimization quadratic function,and the controller’s explicit analytic solution is also obtained.Furthermore,the closed⁃loop system's stability can be ensured.Finally,the results of simulation reveal that the presented control strategy has a faster convergence speed as well as more stable dynamic property compared with the model⁃free sliding mode control(MFSC).展开更多
Most efficient indeces and query techniques over XML (extensible markup language) data are based on a certain labeling scheme, which can quickly determine ancestor-descendant and parent-child relationship between tw...Most efficient indeces and query techniques over XML (extensible markup language) data are based on a certain labeling scheme, which can quickly determine ancestor-descendant and parent-child relationship between two nodes. The current basic labeling schemes such as containment scheme and prefix scheme cannot avoid re- labeling when XML documents are updated. After analyzing the essence of existing dynamic XML labels such as compact dynamic binary string (CDBS) and vector encoding, this paper gives a common unifying framework for the numeric-based generalized dynamic label, which can be implemented into a variety of dynamic labels according to the different user-defined value comparison methods. This paper also proposes a novel dynamic labeling scheme called radical sign label. Extensive experiments show that the radical sign label performs well for the initialization, insertion and query operations, and especially for skewed insertion where the storage cost of the radical sign label is better than that of former methods.展开更多
基金Project of National Natural Science Fund for the Youth,China(No.51208473)The Key Project for Science and Technology of Shanxi,China(No.20130313010-3)
文摘The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.
基金supported under Australian Research Council's Discovery Projects funding scheme(project No.DP120101761)
文摘Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC.This study presents the application of artificial neural networks(ANNs) for a priori prediction of the effectiveness of RDC.The models are trained with in situ dynamic cone penetration(DCP) test data obtained from previous civil projects associated with the 4-sided impact roller.The predictions from the ANN models are in good agreement with the measured field data,as indicated by the model correlation coefficient of approximately 0.8.It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types.
基金Federal Highway Administration(FHWA)Under Grant No.DTFH61-98-C-0094
文摘The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densitication during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils.
文摘Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement,however, these parameters are not studied for improvement adjacent to the slopes or trenches. In thisresearch, four different slopes with different inclinations are modeled numerically using the finiteelement code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safetyare kept similar for all trenches and determined numerically by application of gravity loads to the slopeusing strength reduction method (SRM). The analysis focuses on crater depth and improvement regionwhich are compared to the state of flat ground. It can be observed that compacted area adjacent to theslopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depthincreases with increase in slope inclination.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金the support and motivation provided by National 973 Project of China (No. 2012CB026104)National Natural Science Foundation of China (No. 41171064) and (No. 41271072)
文摘The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement effect of the QarharvaTrolmud Highway, Qinghai Province, China, dynamic compaction replacement (DCR) composite foundation was applied in saline soils. A field experiment was conducted in this area, where strength and working mechanism of pier-soil and deformation modulus of the composite foundation was analyzed after reinforcement. This paper presents methods for determining the coefficient on the bearing capacity evaluation and deformation modulus of composite foundation with DC1L Reinforcement case of DCR is highly effective in saline soils of the salt lake regions, which helps the mi-tion of water and salt in saline soils.
基金provided by the National 973 Project of China (No.2012CB026104)the National Natural Science Foundation of China (Nos.41171064,41271072)
文摘Melt shrinkage, salt bulge, and corrosiveness are common problems with saline soils, which damage highway foundations and cause huge financial losses. In order to improve the saline soil subgrade, dynamic compaction (DC) and rolling compaction (RC) technology were applied on the Qarhan-Golmud Highway in Qinghai Province, China. A field experi- ment was conducted in which shear strength, deformation modulus, and the working mechanism of the composite foun- dation were analyzed after reinforcement. Both the DC and RC methods were found to be effective and helped to improve the foundation strength of saline soils, although the ultimate bearing capacity and deformation modulus of the RC method were lower than that of the DC method.
基金Acknowledgement The authors of this paper thank the financial support from National Natural Science Foundation of China through project No.50478096.
文摘The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11227083 and 91536221
文摘We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase shift and contrast of the interference fringe are experimentally investigated. The results show that the contrast of the interference fringe is well held when the platform is rotated, and the phase shift of the interference fringe is linearly proportional to the rotation rate of the platform. The long-term stability, which is evaluated by the overlapped Allan deviation, is 8.5 × 10^-6 rad/s over the integrating time of 1000s.
基金Supported by the National Youth Science Foundation of China(40802065)the Jiangsu Province Ed-ucation Science Foundation(08KJD580004)the Innovation Research Foundation of Nanjing Institute of Technology(CKJ2011010)
文摘A highway in the floodplain of the Abandoned Yellow River in the north of Jiangsu Province is recently remediated to reduce liquefaction potential using the dynamic compaction(DC)method of densification of in-place soils.Firstly,the liquefaction potential of the soil at the project site is analysed according to the code of seismic design.Then the in-situ single point impact tests are performed on the liquefiable soil.Settlement of crater,excess pore pressure,ground heave and lateral deformation under DC impact are measured and analyzed.Subsequently, the standard penetration test(SPT)and cone penetration test(CPT)are used for investigating the compaction effectiveness.At last,the improvement effect of DC is discussed according to the technical specification of dynamic consolidation to ground treatment.The investigation results indicate that the DC technique is an effective way for remediating liquefiable soil in highway engineering practice.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61803224)the Natural Science Foundation of Shandong Province(Grant No.ZR2019QF005).
文摘For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the improved projection algorithm to approach the controlled nonlinear system.Then,on the basis of the estimation model,a predictive controller is designed by solving the finite time domain rolling optimization quadratic function,and the controller’s explicit analytic solution is also obtained.Furthermore,the closed⁃loop system's stability can be ensured.Finally,the results of simulation reveal that the presented control strategy has a faster convergence speed as well as more stable dynamic property compared with the model⁃free sliding mode control(MFSC).
基金the National Major Projects on Science and Technology(No.2010ZX01042-002-003-004)the National Basic Research Program (973) of China(No.2010CB328106)+2 种基金the National Natural Science Foundation of China(No. 61170085)the Program for New Century Excellent Talents in China(No.NCET-10-0388)the Shanghai Leading Academic Discipline Project(No.B412)
文摘Most efficient indeces and query techniques over XML (extensible markup language) data are based on a certain labeling scheme, which can quickly determine ancestor-descendant and parent-child relationship between two nodes. The current basic labeling schemes such as containment scheme and prefix scheme cannot avoid re- labeling when XML documents are updated. After analyzing the essence of existing dynamic XML labels such as compact dynamic binary string (CDBS) and vector encoding, this paper gives a common unifying framework for the numeric-based generalized dynamic label, which can be implemented into a variety of dynamic labels according to the different user-defined value comparison methods. This paper also proposes a novel dynamic labeling scheme called radical sign label. Extensive experiments show that the radical sign label performs well for the initialization, insertion and query operations, and especially for skewed insertion where the storage cost of the radical sign label is better than that of former methods.