In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The stud...In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The study focused on perioperative dynamic respiratory and hemodynamic disturbances and early postsurgical inflammatory responses.展开更多
Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of ...Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of construction of dynamic wrists. Type I-3 and Ⅱ-6 dynamic compliant wrists have been designed and made. Prblems in the production of compliant elements and the connection between compliant elements and wrists were also solved. A study on the results of tests of the function of two kinds of dynamic compliant wrists shows that the dynamic compliant wrist's compliancy function can be improved by adding metallic materials having higher longitudinal and transverse rigidity into the softer elstomer. And the design Principle is proved to be feasible and practicable. It can be expected that the use of dynamic compliant wrist will greatly lower the technical requirements of the shaft-hole assembly and the requirements in the resetting accuracy.展开更多
To improve the performance of asphalt pavement, the dynamic and static tests of asphalt were used to measure its viscoelastic properties under different time. Based on the obtained data of static creep compliances and...To improve the performance of asphalt pavement, the dynamic and static tests of asphalt were used to measure its viscoelastic properties under different time. Based on the obtained data of static creep compliances and dynamic compliances according to the static creep test and dynamic test of asphalt using the dynamic shear rheometer, the discrete retardation time spectra were attained using the non-linear regression method. All viscoelastic functions are mathematically equivalent and belong to the same retardation time spectra, so the dynamic compliances of asphalt were converted to the static creep compliance using the retardation time spectra. Good correlations were found between calculation results and measurement results. In accordance to these findings, the retardation time spectra can accurately transform static and dynamic viscoelastic functions. Therefore, we can obtain viscoelastic properties over much larger time or frequency region than measurement results.展开更多
Based on the theory of elastic wave propagation in saturated soil subgrade established by the author of this paper, the axisymmetric vertical vibration of a rigid circular foundation resting on partially saturated soi...Based on the theory of elastic wave propagation in saturated soil subgrade established by the author of this paper, the axisymmetric vertical vibration of a rigid circular foundation resting on partially saturated soil subgrade which is composed of a dry elastic layer and it saturated substratum is studied. The analysis relied on the use of integral transform techniques and a pair of dual integral equations governing the vertical vibration of the rigid foundation is listed under the consideration of mixed boundary-value condition. The results tire reduced to the case for saturated half-space. The set of dual integral equations are reduced to a Fredholm integral equation of the second kind and solved by numerical procedures, Numerical examples are given at the end of the paper and plots of the dynamic compliance coefficient C-b versus the dimensionless frequency a(0) are presented.展开更多
The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved b...The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved by employing the technology of Hankel transform. By taking into account the boundary conditions, the dual integral equations of torsional vibration of a rigid circular plate are established, which are further converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficients of the foundation on saturated stratum, the contact shear stress under the foundation and the angular amplitude of the foundation are evaluated. Numerical results indicate that, when the dimensionless height is bigger than 5, saturated stratum overlaying bedrock can be treated as saturated half space approximately. When the dimensionless frequency is low, the permeability of the soil must be taken into account. Furthermore, when the vibration frequency is a constant, the height of the saturated stratum has a slight effect on the dimensionless contact shear stress under the foundation.展开更多
An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isot...An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isotropic saturated poroelastic medium were solved. Considering the mixed boundary-value conditions, the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established. By appropriate transform, the dual integral equations were converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficient, the torsional angular amplitude of the foundation and the contact shear stress were expressed explicitly. Selected examples were presented to analyse the influence of saturated soil's anisotropy on the foundation's vibrations.展开更多
This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this wo...This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this work,a set of morphable components are introduced as the basic building blocks for topology optimization,and the optimized structural layout can be found by optimizing the parameters characterizing the locations and geometries of the components explicitly.The degree of freedom(DOF)elimination technique is also employed to delete unnecessary DOFs at each iteration.Since the proposed approach solves the corresponding optimization problems in an explicit way,some challenging issues(e.g.,the large computational burden related to finite element analysis and sensitivity analysis,the localized eigenmodes in low material density regions,and the impact of excitation frequency on the optimization process)associated with the traditional approaches can be circumvented naturally.Numerical results show that the proposed approach is effective for solving topology optimization problems involving structural dynamic behaviors,especially when high-frequency responses are considered.展开更多
文摘In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The study focused on perioperative dynamic respiratory and hemodynamic disturbances and early postsurgical inflammatory responses.
文摘Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of construction of dynamic wrists. Type I-3 and Ⅱ-6 dynamic compliant wrists have been designed and made. Prblems in the production of compliant elements and the connection between compliant elements and wrists were also solved. A study on the results of tests of the function of two kinds of dynamic compliant wrists shows that the dynamic compliant wrist's compliancy function can be improved by adding metallic materials having higher longitudinal and transverse rigidity into the softer elstomer. And the design Principle is proved to be feasible and practicable. It can be expected that the use of dynamic compliant wrist will greatly lower the technical requirements of the shaft-hole assembly and the requirements in the resetting accuracy.
基金Sponsored by the Post-doctoral Innovation Science Foundation of South China University of Technology(Grant No.20080222)
文摘To improve the performance of asphalt pavement, the dynamic and static tests of asphalt were used to measure its viscoelastic properties under different time. Based on the obtained data of static creep compliances and dynamic compliances according to the static creep test and dynamic test of asphalt using the dynamic shear rheometer, the discrete retardation time spectra were attained using the non-linear regression method. All viscoelastic functions are mathematically equivalent and belong to the same retardation time spectra, so the dynamic compliances of asphalt were converted to the static creep compliance using the retardation time spectra. Good correlations were found between calculation results and measurement results. In accordance to these findings, the retardation time spectra can accurately transform static and dynamic viscoelastic functions. Therefore, we can obtain viscoelastic properties over much larger time or frequency region than measurement results.
文摘Based on the theory of elastic wave propagation in saturated soil subgrade established by the author of this paper, the axisymmetric vertical vibration of a rigid circular foundation resting on partially saturated soil subgrade which is composed of a dry elastic layer and it saturated substratum is studied. The analysis relied on the use of integral transform techniques and a pair of dual integral equations governing the vertical vibration of the rigid foundation is listed under the consideration of mixed boundary-value condition. The results tire reduced to the case for saturated half-space. The set of dual integral equations are reduced to a Fredholm integral equation of the second kind and solved by numerical procedures, Numerical examples are given at the end of the paper and plots of the dynamic compliance coefficient C-b versus the dimensionless frequency a(0) are presented.
基金Project supported by the National Natural Science Foundation of China (No. 50478081).
文摘The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved by employing the technology of Hankel transform. By taking into account the boundary conditions, the dual integral equations of torsional vibration of a rigid circular plate are established, which are further converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficients of the foundation on saturated stratum, the contact shear stress under the foundation and the angular amplitude of the foundation are evaluated. Numerical results indicate that, when the dimensionless height is bigger than 5, saturated stratum overlaying bedrock can be treated as saturated half space approximately. When the dimensionless frequency is low, the permeability of the soil must be taken into account. Furthermore, when the vibration frequency is a constant, the height of the saturated stratum has a slight effect on the dimensionless contact shear stress under the foundation.
基金Project supported by the National Natural Science Foundation of China (No.50478081)
文摘An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isotropic saturated poroelastic medium were solved. Considering the mixed boundary-value conditions, the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established. By appropriate transform, the dual integral equations were converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficient, the torsional angular amplitude of the foundation and the contact shear stress were expressed explicitly. Selected examples were presented to analyse the influence of saturated soil's anisotropy on the foundation's vibrations.
基金Financial support from the National Natural Science Foundation of China (11821202,11872141,11922204,12002073)the National Key Research and Development Plan (2020YFB1709401)+1 种基金the Fundamental Research Funds for the Central Universities[DUT20RC (3)020]the 111 Project (B14013)is gratefully acknowledged.
文摘This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this work,a set of morphable components are introduced as the basic building blocks for topology optimization,and the optimized structural layout can be found by optimizing the parameters characterizing the locations and geometries of the components explicitly.The degree of freedom(DOF)elimination technique is also employed to delete unnecessary DOFs at each iteration.Since the proposed approach solves the corresponding optimization problems in an explicit way,some challenging issues(e.g.,the large computational burden related to finite element analysis and sensitivity analysis,the localized eigenmodes in low material density regions,and the impact of excitation frequency on the optimization process)associated with the traditional approaches can be circumvented naturally.Numerical results show that the proposed approach is effective for solving topology optimization problems involving structural dynamic behaviors,especially when high-frequency responses are considered.