Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutua...Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process.展开更多
This paper proposes an y2-y∞ learning law as a new learning method for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the y2-y∞ learning law is presented to...This paper proposes an y2-y∞ learning law as a new learning method for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the y2-y∞ learning law is presented to not only guarantee asymptotical stability of dynamic neural networks but also reduce the effect of external disturbance to an y2-y∞ induced norm constraint. It is shown that the design of the y2-y∞ learning law for such neural networks can be achieved by solving LMIs, which can be easily facilitated by using some standard numerical packages. A numerical example is presented to demonstrate the validity of the proposed learning law.展开更多
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t...In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.展开更多
Dynamic neural network(NN)techniques are increasingly important because they facilitate deep learning techniques with more complex network architectures.However,existing studies,which predominantly optimize the static...Dynamic neural network(NN)techniques are increasingly important because they facilitate deep learning techniques with more complex network architectures.However,existing studies,which predominantly optimize the static computational graphs by static scheduling methods,usually focus on optimizing static neural networks in deep neural network(DNN)accelerators.We analyze the execution process of dynamic neural networks and observe that dynamic features introduce challenges for efficient scheduling and pipelining in existing DNN accelerators.We propose DyPipe,a holistic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators.DyPipe achieves significant performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks.Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than 96%performance for static neural networks.展开更多
Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinemati...Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinematic control of manipulators.Due to physical limitations and actuation saturation of manipulator joints,the involvement of joint constraints for kinematic control of manipulators is essential and critical.However,current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints,and to the best of our knowledge,methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported.In this study,for the first time,a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints,and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders.The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution.Simulation results further demonstrate the effectiveness of the proposed method in end‐effector path tracking control under different levels of joint constraints based on the Kuka manipulator system.Comparisons with other methods such as the pseudoinverse‐based method and conventional recurrent neural network method substantiate the superiority of the proposed method.展开更多
Pneumatic artificial muscles(PAM)have been recently considered as a prominent challenge regarding pneumatic actuators specifically for rehabilitation and medical applications.Since accomplishing accurate control of th...Pneumatic artificial muscles(PAM)have been recently considered as a prominent challenge regarding pneumatic actuators specifically for rehabilitation and medical applications.Since accomplishing accurate control of the PAM is comparatively complicated due to time-varying behavior,elasticity and ambiguous characteristics,a high performance and efficient control approach should be adopted.Besides of the mentioned challenges,limited course length is another predicament with the PAM control.In this regard,this paper proposes a new hybrid dynamic neural network(DNN)and proportional integral derivative(PID)controller for the position of the PAM.In order to enhance the proficiency of the controller,the problem under study is designed in the form of an optimization trend.Considering the potential of particle swarm optimization,it has been applied to optimally tune the PID-DNN parameters.To verify the performance of the proposed controller,it has been implemented on a real-time system and compared to a conventional sliding mode controller.Simulation and experimental results show the effectiveness of the proposed controller in tracking the reference signals in the entire course of the PAM.展开更多
The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,...The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,which combines the advantages of mechanism model and black-box model,is proposed in this paper.To improve the performance,the static neural network and variable neural network are used to build the black-box model.The static neural network can significantly improve the static performance of the hybrid model,and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy.Finally,the hybrid dynamic model is validated with a 500 W PEM fuel cell.The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application.展开更多
Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smo...Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach.展开更多
In this paper,we study the distributionally robust joint chance-constrained Markov decision process.Utilizing the logarithmic transformation technique,we derive its deterministic reformulation with bi-convex terms und...In this paper,we study the distributionally robust joint chance-constrained Markov decision process.Utilizing the logarithmic transformation technique,we derive its deterministic reformulation with bi-convex terms under the moment-based uncertainty set.To cope with the non-convexity and improve the robustness of the solution,we propose a dynamical neural network approach to solve the reformulated optimization problem.Numerical results on a machine replacement problem demonstrate the efficiency of the proposed dynamical neural network approach when compared with the sequential convex approximation approach.展开更多
In this paper, a composite control scheme for macro-micro dual-drive positioning stage with high accel- eration and high precision is proposed. The objective of control is to improve the precision by reducing the infl...In this paper, a composite control scheme for macro-micro dual-drive positioning stage with high accel- eration and high precision is proposed. The objective of control is to improve the precision by reducing the influence of system vibration and external noise. The positioning stage is composed of voice coil motor (VCM) as macro driver and piezoelectric actuator (PEA) as micro driver. The precision of the macro drive positioning stage is improved by the com- bined PID control with adaptive Kalman filter (AKF). AKF is used to compensate VCM vibration (as the virtual noise) and the external noise. The control scheme of the micro drive positioning stage is presented as the integrated one with PID and intelligent adaptive inverse control approach to compensate the positioning error caused by macro drive positioning stage. A dynamic recurrent neural networks (DRNN) based inverse control approach is proposed to offset the hysteresis nonlinearity of PEA. Simulations show the positioning precision of macro-micro dual-drive stage is clearly improved via the proposed control scheme.展开更多
An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting ...An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting mechanism is proposed. It considers the non-linearity and time variations in the control process and uses Dynamic Fuzzy Neural Networks (D-FNN). The inverse characteristics of the system are studied. An adaptive on-line learning and error compensation mechanism guarantees sys- tem real-time performance and reliability. Parameters from a German Eickhoff SL500 shearer were used with Maflab/Simulink to simulate a height adjusting control system. Simulation shows that the trace error of a D-FNN controller is smaller than that of a PID controller. Also, the D-FNN control scheme has good generalization and tracking performance, which allow it to satisfy the needs of a shearer height adjusting system.展开更多
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid...Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.展开更多
Dynamic graph neural networks(DGNNs)have demonstrated their extraordinary value in many practical applications.Nevertheless,the vulnerability of DNNs is a serious hidden danger as a small disturbance added to the mode...Dynamic graph neural networks(DGNNs)have demonstrated their extraordinary value in many practical applications.Nevertheless,the vulnerability of DNNs is a serious hidden danger as a small disturbance added to the model can markedly reduce its performance.At the same time,current adversarial attack schemes are implemented on static graphs,and the variability of attack models prevents these schemes from transferring to dynamic graphs.In this paper,we use the diffused attack of node injection to attack the DGNNs,and first propose the node injection attack based on structural fragility against DGNNs,named Structural Fragility-based Dynamic Graph Node Injection Attack(SFIA).SFIA firstly determines the target time based on the period weight.Then,it introduces a structural fragile edge selection strategy to establish the target nodes set and link them with the malicious node using serial inject.Finally,an optimization function is designed to generate adversarial features for malicious nodes.Experiments on datasets from four different fields show that SFIA is significantly superior to many comparative approaches.When the graph is injected with 1%of the original total number of nodes through SFIA,the link prediction Recall and MRR of the target DGNN link decrease by 17.4%and 14.3%respectively,and the accuracy of node classification decreases by 8.7%.展开更多
Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online...Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online, and large-time delay exists in offline analysis through laboratory sampling. A nonlinear multivariate intelligent modeling method was proposed for molten iron quality (MIQ) based on principal component analysis (PCA) and dynamic ge- netic neural network. The modeling method used the practical data processed by PCA dimension reduction as inputs of the dynamic artificial neural network (ANN). A dynamic feedback link was introduced to produce a dynamic neu- ral network on the basis of traditional back propagation ANN. The proposed model improved the dynamic adaptabili- ty of networks and solved the strong fluctuation and resistance problem in a nonlinear dynamic system. Moreover, a new hybrid training method was presented where adaptive genetic algorithms (AGA) and ANN were integrated, which could improve network convergence speed and avoid network into local minima. The proposed method made it easier for operators to understand the inside status of blast furnace and offered real-time and reliable feedback infor- mation for realizing close-loop control for MIQ. Industrial experiments were made through the proposed model based on data collected from a practical steel company. The accuracy could meet the requirements of actual operation.展开更多
Online estimation of the double nugget diameters was performed by means of a back propagation neural network.The double nugget diameters were obtained using actual welding experiment and numerical simulation,according...Online estimation of the double nugget diameters was performed by means of a back propagation neural network.The double nugget diameters were obtained using actual welding experiment and numerical simulation,according to different characteristics of aluminum nugget and steel nugget.The input of the neural network was some key characteristic parameters extracted from dynamic power signal,which were peak point,knee point and their variation rate over time,as well as heat energy delivered into the welding system.The architecture of the neural network was confirmed by confirming the number of neurons in hidden layer through a series of calculations.The key parameters of the neural network were obtained by means of training 81 arrays of data set.Then,the neural network was used to test the remaining 20 arrays of verifying data set,and the results showed that both of the mean errors for the two nugget diameters were below 3%.In addition,corresponding analyses showed that the accuracy of two nugget diameters was higher than that of tensile-shear strength.展开更多
An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering ...An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering that the ascent model of the SRPV is non-affine,a model-free Single Network Adaptive Critic(SNAC)method is developed based on the dynamic neural network and the traditional SNAC method.This developed model-free SNAC method overcomes the limitation of the traditional SNAC method that can only be applied to affine systems.Then,a closed-form adaptive optimal controller is designed for the non-affine dynamics of SRPVs.This controller can adjust its parameters under different flight conditions and converge to the approximate optimal controller through online self-learning.Finally,the convergence to the approximate optimal controller is proved.The theoretical analysis of the uniformly ultimate boundedness of the tracking error is also presented.Simulation results demonstrate the effectiveness of the proposed controller.展开更多
This paper shows hidden information from the plastic deformation of metallic glasses using machine learning.Ni_(62)Nb_(38)(at.%)metallic glass(MG)film and Zr_(64.13)Cu_(15.75)Al_(10)Ni_(10.12)(at.%)BMG,as two model ma...This paper shows hidden information from the plastic deformation of metallic glasses using machine learning.Ni_(62)Nb_(38)(at.%)metallic glass(MG)film and Zr_(64.13)Cu_(15.75)Al_(10)Ni_(10.12)(at.%)BMG,as two model materials,are considered for nano-scratching and compression experiment,respectively.The interconnectedness among variables is probed using correlation analysis.The evolvement mechanism and governing system of plastic deformation are explored by combining dynamical neural networks and sparse identification.The governing system has the same basis function for different experiments,and the coefficient error is≤0.14%under repeated experiments,revealing the intrinsic quality in metallic glasses.Furthermore,the governing system is conducted based on the preceding result to predict the deformation behavior.This shows that the prediction agrees well with the real value for the deformation process.展开更多
文摘Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process.
基金Project supported by the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Center for Healthcare Technology Development)
文摘This paper proposes an y2-y∞ learning law as a new learning method for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the y2-y∞ learning law is presented to not only guarantee asymptotical stability of dynamic neural networks but also reduce the effect of external disturbance to an y2-y∞ induced norm constraint. It is shown that the design of the y2-y∞ learning law for such neural networks can be achieved by solving LMIs, which can be easily facilitated by using some standard numerical packages. A numerical example is presented to demonstrate the validity of the proposed learning law.
文摘In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.
基金supported by the Beijing Natural Science Foundation under Grant No.JQ18013the National Natural Science Foundation of China under Grant Nos.61925208,61732007,61732002 and 61906179+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)under Grant No.XDB32050200the Youth Innovation Promotion Association CAS,Beijing Academy of Artificial Intelligence(BAAI)and Xplore Prize.
文摘Dynamic neural network(NN)techniques are increasingly important because they facilitate deep learning techniques with more complex network architectures.However,existing studies,which predominantly optimize the static computational graphs by static scheduling methods,usually focus on optimizing static neural networks in deep neural network(DNN)accelerators.We analyze the execution process of dynamic neural networks and observe that dynamic features introduce challenges for efficient scheduling and pipelining in existing DNN accelerators.We propose DyPipe,a holistic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators.DyPipe achieves significant performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks.Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than 96%performance for static neural networks.
文摘Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinematic control of manipulators.Due to physical limitations and actuation saturation of manipulator joints,the involvement of joint constraints for kinematic control of manipulators is essential and critical.However,current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints,and to the best of our knowledge,methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported.In this study,for the first time,a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints,and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders.The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution.Simulation results further demonstrate the effectiveness of the proposed method in end‐effector path tracking control under different levels of joint constraints based on the Kuka manipulator system.Comparisons with other methods such as the pseudoinverse‐based method and conventional recurrent neural network method substantiate the superiority of the proposed method.
文摘Pneumatic artificial muscles(PAM)have been recently considered as a prominent challenge regarding pneumatic actuators specifically for rehabilitation and medical applications.Since accomplishing accurate control of the PAM is comparatively complicated due to time-varying behavior,elasticity and ambiguous characteristics,a high performance and efficient control approach should be adopted.Besides of the mentioned challenges,limited course length is another predicament with the PAM control.In this regard,this paper proposes a new hybrid dynamic neural network(DNN)and proportional integral derivative(PID)controller for the position of the PAM.In order to enhance the proficiency of the controller,the problem under study is designed in the form of an optimization trend.Considering the potential of particle swarm optimization,it has been applied to optimally tune the PID-DNN parameters.To verify the performance of the proposed controller,it has been implemented on a real-time system and compared to a conventional sliding mode controller.Simulation and experimental results show the effectiveness of the proposed controller in tracking the reference signals in the entire course of the PAM.
基金Supported by the National Science Fund for Distinguished Young Scholars of China (60925011)
文摘The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,which combines the advantages of mechanism model and black-box model,is proposed in this paper.To improve the performance,the static neural network and variable neural network are used to build the black-box model.The static neural network can significantly improve the static performance of the hybrid model,and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy.Finally,the hybrid dynamic model is validated with a 500 W PEM fuel cell.The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application.
基金This work was supported by the National Natural Science Foundation of China(No.60274009)and Specialized Research Fundfor the Doctoral Program of Higher Education(No.20020145007).
文摘Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach.
基金supported by National Natural Science Foundation of China(Grant Nos.11991023 and 12371324)National Key R&D Program of China(Grant No.2022YFA1004000)。
文摘In this paper,we study the distributionally robust joint chance-constrained Markov decision process.Utilizing the logarithmic transformation technique,we derive its deterministic reformulation with bi-convex terms under the moment-based uncertainty set.To cope with the non-convexity and improve the robustness of the solution,we propose a dynamical neural network approach to solve the reformulated optimization problem.Numerical results on a machine replacement problem demonstrate the efficiency of the proposed dynamical neural network approach when compared with the sequential convex approximation approach.
基金partly supported by the National Natural Science Foundation of China(No.61174047)the School Basic Foundation of Northwestern Polytechnical University(No.GCKYI006)the Fundamental Research Funds for the Central Universities(No.HEUCFR1214)
文摘In this paper, a composite control scheme for macro-micro dual-drive positioning stage with high accel- eration and high precision is proposed. The objective of control is to improve the precision by reducing the influence of system vibration and external noise. The positioning stage is composed of voice coil motor (VCM) as macro driver and piezoelectric actuator (PEA) as micro driver. The precision of the macro drive positioning stage is improved by the com- bined PID control with adaptive Kalman filter (AKF). AKF is used to compensate VCM vibration (as the virtual noise) and the external noise. The control scheme of the micro drive positioning stage is presented as the integrated one with PID and intelligent adaptive inverse control approach to compensate the positioning error caused by macro drive positioning stage. A dynamic recurrent neural networks (DRNN) based inverse control approach is proposed to offset the hysteresis nonlinearity of PEA. Simulations show the positioning precision of macro-micro dual-drive stage is clearly improved via the proposed control scheme.
基金support for this work, provided by the National High Technology Research and Development Program of China (No2008AA062202)China University of Mining & Technology Scaling Program
文摘An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting mechanism is proposed. It considers the non-linearity and time variations in the control process and uses Dynamic Fuzzy Neural Networks (D-FNN). The inverse characteristics of the system are studied. An adaptive on-line learning and error compensation mechanism guarantees sys- tem real-time performance and reliability. Parameters from a German Eickhoff SL500 shearer were used with Maflab/Simulink to simulate a height adjusting control system. Simulation shows that the trace error of a D-FNN controller is smaller than that of a PID controller. Also, the D-FNN control scheme has good generalization and tracking performance, which allow it to satisfy the needs of a shearer height adjusting system.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120042120014)
文摘Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.
基金supported by the National Natural Science Foundation of China(NSFC)(62172377,61872205)the Shandong Provincial Natural Science Foundation,China(ZR2019MF018)the Startup Research Foundation for Distinguished Scholars(202112016).
文摘Dynamic graph neural networks(DGNNs)have demonstrated their extraordinary value in many practical applications.Nevertheless,the vulnerability of DNNs is a serious hidden danger as a small disturbance added to the model can markedly reduce its performance.At the same time,current adversarial attack schemes are implemented on static graphs,and the variability of attack models prevents these schemes from transferring to dynamic graphs.In this paper,we use the diffused attack of node injection to attack the DGNNs,and first propose the node injection attack based on structural fragility against DGNNs,named Structural Fragility-based Dynamic Graph Node Injection Attack(SFIA).SFIA firstly determines the target time based on the period weight.Then,it introduces a structural fragile edge selection strategy to establish the target nodes set and link them with the malicious node using serial inject.Finally,an optimization function is designed to generate adversarial features for malicious nodes.Experiments on datasets from four different fields show that SFIA is significantly superior to many comparative approaches.When the graph is injected with 1%of the original total number of nodes through SFIA,the link prediction Recall and MRR of the target DGNN link decrease by 17.4%and 14.3%respectively,and the accuracy of node classification decreases by 8.7%.
基金Sponsored by National Natural Science Foundation of China(61290323,61333007,614730646)IAPI Fundamental Research Funds(2013ZCX02-09)+1 种基金Fundamental Research Funds for the Central Universities of China(N130508002,N130108001)National High-tech Research and Development Program of China(2015AA043802)
文摘Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online, and large-time delay exists in offline analysis through laboratory sampling. A nonlinear multivariate intelligent modeling method was proposed for molten iron quality (MIQ) based on principal component analysis (PCA) and dynamic ge- netic neural network. The modeling method used the practical data processed by PCA dimension reduction as inputs of the dynamic artificial neural network (ANN). A dynamic feedback link was introduced to produce a dynamic neu- ral network on the basis of traditional back propagation ANN. The proposed model improved the dynamic adaptabili- ty of networks and solved the strong fluctuation and resistance problem in a nonlinear dynamic system. Moreover, a new hybrid training method was presented where adaptive genetic algorithms (AGA) and ANN were integrated, which could improve network convergence speed and avoid network into local minima. The proposed method made it easier for operators to understand the inside status of blast furnace and offered real-time and reliable feedback infor- mation for realizing close-loop control for MIQ. Industrial experiments were made through the proposed model based on data collected from a practical steel company. The accuracy could meet the requirements of actual operation.
基金This work was supported by the National Natural Science Foundation of China(No.51605103).
文摘Online estimation of the double nugget diameters was performed by means of a back propagation neural network.The double nugget diameters were obtained using actual welding experiment and numerical simulation,according to different characteristics of aluminum nugget and steel nugget.The input of the neural network was some key characteristic parameters extracted from dynamic power signal,which were peak point,knee point and their variation rate over time,as well as heat energy delivered into the welding system.The architecture of the neural network was confirmed by confirming the number of neurons in hidden layer through a series of calculations.The key parameters of the neural network were obtained by means of training 81 arrays of data set.Then,the neural network was used to test the remaining 20 arrays of verifying data set,and the results showed that both of the mean errors for the two nugget diameters were below 3%.In addition,corresponding analyses showed that the accuracy of two nugget diameters was higher than that of tensile-shear strength.
基金supported by the National Key R&D Program of China(No.2016YFB1200100)。
文摘An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering that the ascent model of the SRPV is non-affine,a model-free Single Network Adaptive Critic(SNAC)method is developed based on the dynamic neural network and the traditional SNAC method.This developed model-free SNAC method overcomes the limitation of the traditional SNAC method that can only be applied to affine systems.Then,a closed-form adaptive optimal controller is designed for the non-affine dynamics of SRPVs.This controller can adjust its parameters under different flight conditions and converge to the approximate optimal controller through online self-learning.Finally,the convergence to the approximate optimal controller is proved.The theoretical analysis of the uniformly ultimate boundedness of the tracking error is also presented.Simulation results demonstrate the effectiveness of the proposed controller.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52071298,and 11771407)the ZhongYuan Science and Technology Innovation Leadership Program(Grant No.214200510010)+2 种基金the China Postdoctoral Science Foundation funded project(Grant No.2019M651600)the Innovative Funds Plan of Henan University of Technol-ogy(Grant No.2020ZKCJ09)the Research Foundation for Advanced Talents of Henan University of Technology(Grant No.2018BS027).
文摘This paper shows hidden information from the plastic deformation of metallic glasses using machine learning.Ni_(62)Nb_(38)(at.%)metallic glass(MG)film and Zr_(64.13)Cu_(15.75)Al_(10)Ni_(10.12)(at.%)BMG,as two model materials,are considered for nano-scratching and compression experiment,respectively.The interconnectedness among variables is probed using correlation analysis.The evolvement mechanism and governing system of plastic deformation are explored by combining dynamical neural networks and sparse identification.The governing system has the same basis function for different experiments,and the coefficient error is≤0.14%under repeated experiments,revealing the intrinsic quality in metallic glasses.Furthermore,the governing system is conducted based on the preceding result to predict the deformation behavior.This shows that the prediction agrees well with the real value for the deformation process.