期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Dynamic rock tests using split Hopkinson (Kolsky) bar system - A review 被引量:82
1
作者 Kaiwen Xia Wei Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第1期27-59,共33页
Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more... Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsl^j bar systems, which include both split Hopkinson pressure bar (SHPB) and split Hopkinson tension bar (SHTB) systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of tech- niques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT), laser gap gauge (LGG), digital image corre- lation (DIC), Moir~ method, caustics method, photoelastic coating method, dynamic infrared thermog- raphy) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests), dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dy- namic techniques for studying the influences of temperature and pore water. 展开更多
关键词 Rock Split Hopkinson pressure bar (SHPB) dynamic testsRock dynamic properties Loading rate
下载PDF
Prediction of Three Dimensional Crack Path Brittle Fracture in Weldment under Dynamic Load
2
作者 YANG Da-peng PAN Hai-yang +1 位作者 ZHAO Yao LI Tian-yun 《International Journal of Plant Engineering and Management》 2016年第2期115-128,共14页
Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic... Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic stress intensity factors at the tip of a curved crack. Due to three dimensional curved crack growth the dynamic energy release rate can be calculated by using the Irwin's formula. A three dimensional curved crack in materials with inhomogeneous fracture toughness are considered. Paths of a brittle three dimensional curved crack propagating along a welded joint are predicted via the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations. 展开更多
关键词 three dimensional dynamic stress intensity factor curved crack second order perturbation method dynamic energy release rate
下载PDF
Study of evaluation method for the overseas oil and gas investment based on risk compensation 被引量:3
3
作者 Zu-Xin Li Jian-Ye Liu +1 位作者 Dong-Kun Luo Jian-Jun Wang 《Petroleum Science》 SCIE CAS CSCD 2020年第3期858-871,共14页
The overseas oil and gas investment evaluation is one of the core tasks in overseas investment of oil and gas companies,among which risk evaluation and benefit evaluation are the most important.This paper sets forth t... The overseas oil and gas investment evaluation is one of the core tasks in overseas investment of oil and gas companies,among which risk evaluation and benefit evaluation are the most important.This paper sets forth transmission paths of risk factors to the investment benefit by identifying 14 overseas oil and gas investment risks in four categories.On the basis of the concept of risk compensation,different compensation mechanisms specific to each risk are designed.The risk and benefit are integrated objectively to develop a comprehensive evaluation model by correcting the recoverable reserve,adjusting benefit evaluation parameters such as investments on exploration and development,and compensating for the changes in risk factors with time through dynamic discount rate.Moreover,two cases studies,namely the evaluations of Project A in Sudan and comparison among Blocks A–G,are used to describe usage method and applicable scope of such evaluation model,respectively.According to the results,oil price is a key influencing factor for enterprise internal risk and industrial risk.Risk compensation reduces comprehensive benefit of overseas oil and gas investment and undermines the investment feasibility and priority of blocks.The research findings of this paper are free from the effects of some subject factors and avoid multi-objective decision making,and also avoid the undesired repeated calculation of risk factors. 展开更多
关键词 Overseas oil and gas investment Investment evaluation Risk compensation dynamic discount rate Comprehensive benefit
下载PDF
Secure Probabilistic Prediction of Dynamic Thermal Line Rating 被引量:1
4
作者 N.Safari S.M.Mazhari +1 位作者 C.Y.Chung S.B.Ko 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期378-387,共10页
Accurate short-term prediction of overhead line(OHL)transmission ampacity can directly affect the efficiency of power system operation and planning.Any overcstiniation of the dynamic thermal line rating(DTLR)can lead ... Accurate short-term prediction of overhead line(OHL)transmission ampacity can directly affect the efficiency of power system operation and planning.Any overcstiniation of the dynamic thermal line rating(DTLR)can lead to the lifetime degradation and failure of OHLs,safety hazards,etc.This paper presents a secure yet sharp probabilistic model for the hour-ahead prediction of the DTLR.The security of the proposed DTLR limits the frequency of DTLR prediction exceeding the actual DTLR.The model is based on an augmented deep learning architecture that makes use of a wide range of predictors,including historical climatology data and latent variables obtained during DTLR calculation.Furthermore,by introducing a customized cost function,the deep neural network is trained to consider the DTLR security based on the required probability of exceedance while minimizing the deviations of the predicted DTLRs from the actual values.The proposed probabilistic DTLR is developed and verified using recorded experimental data.The simulation results validate the superiority of the proposed DTLR compared with the state-of-the-art prediction models using well-known evaluation metrics. 展开更多
关键词 Deep neural network dynamic thermal line rating overhead line prediction recurrent neural network
原文传递
Combined grain size, strain rate and loading condition effects on mechanical behavior of nanocrystalline Cu under high strain rates 被引量:2
5
作者 Lu-Ming Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1125-1132,共8页
Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are ... Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are performed to study the combined grain size, strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition. Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uni- axial strain loading. Moreover, the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading. The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading, while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading. The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion, while combined twinning and slipping mechanism makes the material more ductile at higher strain rates. 展开更多
关键词 Nanocrystalline Grain boundaries . Grain size stress . Uniaxial strain Cu. Molecular dynamics . High strain rates. Uniaxial
下载PDF
WHU-Grace01s:A new temporal gravity field model recovered from GRACE KBRR data alone 被引量:2
6
作者 Zhou Hao Luo Zhicai Zhong Bo 《Geodesy and Geodynamics》 2015年第5期316-323,共8页
A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this pa... A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions. 展开更多
关键词 Temporal gravity field model Gravity Recovery and Climate Experiment (GRACE) dynamic integral approach K-Band Range Rate (KBRR) Satellite gravity Spherical harmonics Equivalent water height Geopotential determination
下载PDF
TRANSIENT RESPONSE OF COPLANAR INTERFACIAL CRACKS BETWEEN TWO DISSIMILAR PIEZOELECTRIC STRIPS UNDER ANTI-PLANE MECHANICAL AND IN-PLANE ELECTRICAL IMPACTS
7
作者 RayK.L.Su FengWenjie +1 位作者 LiuJinxi ZouZhenzhu 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第4期300-312,共13页
The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditi... The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditions on crack surfaces,i.e.electric impermeable and electric permeable,are obtained.Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations, which can be solved numerically.The effects of electrical load,geometry criterion of piezoelectric strips,relative location of cracks and material properties on the dynamic energy release rate are examined. 展开更多
关键词 coplanar interface cracks dissimilar piezoelectric strips singular integral equations integral transform dynamic energy release rate
下载PDF
Representative Elementary Volume(REV) in Spatio-Temporal Domain: A Method to Find REVfor Dynamic Pores 被引量:4
8
作者 Harpreet Singh 《Journal of Earth Science》 SCIE CAS CSCD 2017年第2期391-403,共13页
One of the potential risks associated with subsurface storage of CO_2 is the seepage of CO_2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show... One of the potential risks associated with subsurface storage of CO_2 is the seepage of CO_2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show that geochemistry, especially mineralization, plays an important role in rendering the faults as conduits for CO_2 movement while others show that mineralization due to CO_2 injection can result in seep migration and flow diversion. Therefore, understanding the changes in reservoir properties due to pore alterations is important to ensure safe long term CO_2 storage in the subsurface. We study the changes in the Representative Elementary Volume(REV) of a rock due to reactive kinetics over a time, using a statistical approach and pore-scale CO_2-rock interactiondata.The goal of this study is to obtain the REV of a rock property that accounts for pore-scale changes over time due to reactive kinetics, and we call this as spatiotemporal REV. Scale-up results suggest that the REV changes with time when CO_2-rock interaction is considered. It is hypothesized that the alteration in pore structure introduces more heterogeneity in the rock, and because of this the magnitude of REV increases. It is possible that these noticeable changes in REV at pore-scale may have an impact when analyzed at the reservoir scale. 展开更多
关键词 reactive dynamics reaction rate constant CO_2 scale-up upscaling geostatistics
原文传递
Forecasting of COVID-19: spread with dynamic transmission rate 被引量:4
9
作者 Yiping Zeng Xiaojing Guo +2 位作者 Qing Deng Shengfeng Luo Hui Zhang 《Journal of Safety Science and Resilience》 2020年第2期91-96,共6页
The COVID-19 was firstly reported in Wuhan,Hubei province,and it was brought to all over China by people travelling for Chinese New Year.The pandemic coronavirus with its catastrophic effects is now a global concern.F... The COVID-19 was firstly reported in Wuhan,Hubei province,and it was brought to all over China by people travelling for Chinese New Year.The pandemic coronavirus with its catastrophic effects is now a global concern.Forecasting of COVID-19 spread has attracted a great attention for public health emergency.However,few re-searchers look into the relationship between dynamic transmission rate and preventable measures by authorities.In this paper,the SEIR(Susceptible Exposed Infectious Recovered)model is employed to investigate the spread of COVID-19.The epidemic spread is divided into two stages:before and after intervention.Before intervention,the transmission rate is assumed to be a constant since individual,community and government response has not taken into place.After intervention,the transmission rate is reduced dramatically due to the societal actions or measures to reduce and prevent the spread of disease.The transmission rate is assumed to follow an exponential function,and the removal rate is assumed to follow a power exponent function.The removal rate is increased with the evolution of the time.Using the real data,the model and parameters are optimized.The transmission rate without measure is calculated to be 0.033 and 0.030 for Hubei and outside Hubei province,respectively.After the model is established,the spread of COVID-19 in Hubei province,France and USA is predicted.From results,USA performs the worst according to the dynamic ratio.The model has provided a mathematical method to evaluate the effectiveness of the government response and can be used to forecast the spread of COVID-19 with better performance. 展开更多
关键词 COVID-19 SEIR Emergency management dynamic transmission rate Basic reproduction number
原文传递
Molecular Dynamics Simulation on Hydrogen Ion Implantation Process in Smart-Cut Technology 被引量:3
10
作者 Bing Wang Bin Gu +1 位作者 Hongbin Zhang Xiqiao Feng 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第2期111-119,共9页
The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydroge... The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation.Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature.By introducing a new parameter of defect rate,the influence of the processing parameters on defect rate is also quantitatively examined. 展开更多
关键词 Smart-Cut technology ion implantation molecular dynamics defect rate
原文传递
A Two-layer Framework for Mitigating the Con-gestion of Urban Power Grids Based on Flexible Topology with Dynamic Thermal Rating
11
作者 Yi Su Jiashen Teh +2 位作者 Qian Luo Kangmiao Tan Jiaying Yong 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第4期83-95,共13页
The urban power grid(UPG)combines transmission and distribution networks.Past studies on UPG congestion mitigation have primarily focused on relieving local congestion while ignoring large-scale energy transfer with s... The urban power grid(UPG)combines transmission and distribution networks.Past studies on UPG congestion mitigation have primarily focused on relieving local congestion while ignoring large-scale energy transfer with safety margins and load balancing.This situation is expected to worsen with the proliferation of renewable energy and electric vehicles.In this paper,a two-layer congestion mitigation framework is proposed,one which considers the congestion of the UPG with flexible topologies.In the upper-layer,the particle swarm optimization algorithm is employed to optimize the power supply distribution(PSD)of substation transformers.This is known as the upper-layer PSD.The lower-layer model recalculates the new PSD,known as the lower-layer PSD,based on the topology candidates.A candidate topology is at an optimum when the Euclidean distance mismatch between the upper-and lower-layer PSDs is the smallest.This optimum topology is tested by standard power flow to ascertain its feasibility.The optimum transitioning sequence between the initial and optimum topologies is also determined by the two-layer framework to minimize voltage deviation and line overloading of the UPG considering dynamic thermal rating.The proposed framework is tested on a 56-node test system.Results show that the proposed framework can significantly reduce congestion,maintain safety margins,and determine the optimum transitioning sequence. 展开更多
关键词 Congestion mitigation urban power grid two-layer framework transitioning sequence dynamic thermal rating
原文传递
Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures 被引量:8
12
作者 Qiu-lin Niu Wei-wei Ming +2 位作者 Ming Chen Si-wen Tang Peng-nan Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第7期724-729,共6页
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro... During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature. 展开更多
关键词 30CrMnSiNi2A steel dynamic mechanical behavior Split Hopkinson pressure bar High temperature High strain rate Ultra-high strength steel
原文传递
Comparison of direct and indirect determinations of dynamic ventilation rate in a modern dairy free stall barn
13
作者 Bing Zou Albert J.Heber +3 位作者 Zhengxiang Shi Songhuai Du Yaomin Jin Teng Teeh Lim 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期41-46,共6页
Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exc... Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exchange measurements are time-consuming and expensive,it is environmentally inefficient to measure livestock building VR continuously in practice.Hence,indirect VR estimation methods have been widely used in modelling environmental control and air emissions,and also to measure airflow in the field.The accuracy of indirect measurement methods needs to be evaluated by comparing with direct measurements.In this study,the direct and indirect methods of determining hourly and daily mean VRs were applied to a mechanically-ventilated dairy free stall barn monitored by the 24-month National Air Emissions Monitoring Study.The direct method was used to continuously monitor fan rotational speeds,and differential static pressures,coupled with periodic in-situ fan performance assessments,to calculate the VR.The indirect method consisted of estimating the VR using CO2 concentration measurements and the CO2 mass balance method.The average daily and hourly means(mean±SD)of directly measured barn ventilation rates for two years were(246±73)m3/s and(245±77)m3/s,respectively.The average daily and hourly means(mean±SD)of barn ventilation rates estimated by the CO2 mass balance method were(287±93.4)m3/s and(287±118)m3/s,respectively.Correlation analyses showed a strong correlation between the indirect CO2 mass balance method and direct measurement methods(r=0.93 for daily means and r=0.85 for hourly means). 展开更多
关键词 dynamic ventilation rate modern dairy free stall barn carbon dioxide mass balance dairy cow direct and indirect determination comparison
原文传递
Study of Multi media Streams Dynamic Rate Control Based on Fuzzy Adaptive PID
14
作者 SUN Yan-fei ZHANG Shun-yi +1 位作者 SHI Jin WANG Jiang-tao 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2005年第4期75-79,共5页
A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system... A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system resources in time, so that it can avoid system's regulating oscillation and guarantee system's stability. And, some work has been done to analyze adaptive session model of multimedia streams, to implement future available bandwidth estimation of IP network, to achieve PID parameters' on-line self-tuning by fuzzy controlling. Simulation validated the theoretical results of MFPID. 展开更多
关键词 multimedia transmission dynamic end sending rate PID adaptive regulating fuzzy parameter self-tuning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部