期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive Method’s Application for the Identification Systems in Dynamic Weighing
1
作者 Pavel Shakun 《Journal of Traffic and Transportation Engineering》 2024年第4期175-186,共12页
In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of v... In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of vehicle.In this work an algorithm for processing the input data and fiber optic sensor to create the database used in the algorithm is presented.The results of the algorithm for the identification of vehicles are given.The conclusions are made and options of increasing the accuracy of the identification algorithm are considered. 展开更多
关键词 dynamic weighing adaptive filtering digital data processing
下载PDF
A method for weighing broiler chickens using improved amplitude-limiting filtering algorithm and BP neural networks 被引量:7
2
作者 Weihong Ma Qifeng Li +2 位作者 Jiawei Li Luyu Ding Qinyang Yu 《Information Processing in Agriculture》 EI 2021年第2期299-309,共11页
Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighin... Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighing system for broiler chickens can only weigh the broiler chicken in the monitoring area.Usually,it makes poor weight prediction due to poor segmentation especially when the broiler chicken is flapping its wings.To solve these issues,we developed one simple and low-cost weighing system with high stability and accuracy.A validity value extraction method from dynamic weighing was proposed.Then,an improved amplitude-limiting filtering algorithm and a BP neural networks model were developed to avoid accidental interference.The BP neural networks model used daily weight gain,day-age,average velocity,and the weight data after filtering algorithm as the input layer.The weighing system was tested in a commercial Beijing Fatty Chickens house with Beijing Fatty Chickens.We tested thirteen groups of Beijing Fatty Chickens of different weights,from 500 g to 1800 g in intervals of 100 g,using the three different methods:no filtering algorithm or BP neural networks,only the improved amplitude-limiting filtering algorithm and a hybrid of the improved amplitude-limiting filtering algorithm and BP neural networks.The results showed that the hybrid algorithm had a better performance in minimizing the error,lowering from the original 6%down to 3%.The accurate weight data was transmitted to the remote service platform for further decision-making,such as activity analysis,feeding management,and health alerts. 展开更多
关键词 weighing of broiler chickens Improved amplitude-limiting filtering algorithm BP neural networks dynamic weighing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部