Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new s...Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications.展开更多
Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensin...Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.展开更多
A novel adaptive subspace ensemble slow feature regression model was developed for soft sensing application.Compared to traditional single models and random subspace models,the proposed method is improved in three asp...A novel adaptive subspace ensemble slow feature regression model was developed for soft sensing application.Compared to traditional single models and random subspace models,the proposed method is improved in three aspects.Firstly,sub-datasets are constructed through slow feature directions and variables in each subdatasets are selected according to the output related importance index.Then,an adaptive slow feature regression is presented for sub-models.Finally,a Bayesian inference strategy based on a slow feature analysis process that monitors statistics is developed for probabilistic combination.Two industrial examples were used to evaluate the proposed method.展开更多
Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is pr...Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is proposed.Orthogonal projections to latent structures(O-PLS)is a general linear multi-variable data modeling method.It can eliminate systematic variations from descriptive variables(input)that are orthogonal to response variables(output).In the framework of O-PLS model,K-OPLS method maps descriptive variables to high-dimensional feature space by using“kernel technique”to calculate predictive components and response-orthogonal components in the model.Therefore,the K-OPLS method gives the non-linear relationship between the descriptor and the response variables,which improves the performance of the model and enhances the interpretability of the model to a certain extent.To verify the validity of K-OPLS method,it was applied to soft sensing modeling of component content of debutane tower base butane(C4),the quality index of the key product output for industrial fluidized catalytic cracking unit(FCCU)and H 2S and SO 2 concentration in sulfur recovery unit(SRU).Compared with support vector machines(SVM),least-squares support-vector machine(LS-SVM),support vector machine with principal component analysis(PCA-SVM),extreme learning machine(ELM),kernel based extreme learning machine(KELM)and kernel based extreme learning machine with principal component analysis(PCA-KELM)methods under the same conditions,the experimental results show that the K-OPLS method has superior modeling accuracy and good model generalization ability.展开更多
Aiming at the water temperature measuring problem for controlled cooling system of rolling plant,a new water temperature measuring method based on soft-sensing method with a water temperature model of on-line self cor...Aiming at the water temperature measuring problem for controlled cooling system of rolling plant,a new water temperature measuring method based on soft-sensing method with a water temperature model of on-line self correction parameter was built.A water temperature compensation factor model was also built to improve coiling temperature control precision.It was proved that the model meets production requirements.The soft-sensing technique has extensive applications in the field of metal forming.展开更多
Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but ...Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but are still not robust enough to get satisfactory results for failing to extract enough information from the original images. To take full advantage of various features of shadows, a new method combining edges information with the spectral and spatial information is proposed in this paper. As known, edge is one of the most important characteristics in the high-resolution remote-sensing images. Unfortunately, in shadow detection, it is a high-risk strategy to determine whether a pixel is the edge or not strictly because intensity values on shadow boundaries are always between those in shadow and non-shadow areas. Therefore, a soft edge description model is developed to describe the degree of each pixel belonging to the edges or not. Sequentially, the soft edge description is incorporating to a fuzzy clustering procedure based on HMRF (Hidden Markov Random Fields), in which more appropriate spatial contextual information can be used. More concretely, it consists of two components: the soft edge description model and an iterative shadow detection algorithm. Experiments on several remote sensing images have shown that the proposed method can obtain more accurate shadow detection results.展开更多
A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cuttin...A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.展开更多
火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排...火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排放量变得至关重要。在燃煤电厂碳计量中,烟气流量影响燃煤发电中在线监测法的精度,而燃煤消耗量、燃煤元素碳含量以及飞灰碳含量共同决定核算法的可靠性。目前,大多数燃煤发电企业只对流量和燃煤消耗量进行实时监测,在现场恶劣的环境中对燃煤元素碳含量以及飞灰碳含量进行短周期、高频次的直接监测需要花费较大的人力以及物力,流量监测设备也易受烟道环境影响。而软测量技术以其高效和低成本的特点,可为传统碳排放计量过程中关键参数的监测提供一种替代方法。鉴于此,首先阐述了软测量模型的建立过程,包含数据预处理、辅助变量选择、软测量模型建立以及模型校正。数据预处理能够确保数据质量,提高建模效率;辅助变量选择是从大量潜在的变量中筛选出对目标变量的辅助变量,进一步提高建模效率;软测量模型建立主要是基于机理建模和数据驱动建模,是实现目标变量预测的核心;模型校正通过实际的离线或在线数据,对模型进行进一步优化,提高模型的预测精度。其次,针对碳计量相关参数,分析了烟气流量、燃煤消耗量、燃煤元素碳含量和飞灰碳含量监测存在的问题,论述了软测量技术在上述碳计量关键参数的国内外研究进展和应用,评估了机理建模和数据驱动建模技术的有效性、准确性和实用性。其中,机理分析建模主要基于电厂锅炉进出口的能量平衡以及烟风质量守恒等原理,有着确定的数学物理关系式,具有高度可解释性和稳定性,但是建模过程复杂,预测精度较低;数据驱动建模主要是利用各种机器学习方法,基于电厂分布式控制系统(Distributed control system,DCS)丰富的运行数据,对碳计量关键参数进行“黑箱建模”,克服了机理分析建模复杂的过程分析,精度相对较高,但是建模过程不明确,且模型对于不同机组的泛化能力较差。最后,对于软测量技术在碳排放计量领域的发展应用进行了总结与展望。对电厂各参数之间的时序结构、电厂自身计算能力的限制以及机理分析融合数据驱动方法的发展提出相关建议,并对国外二氧化碳预测性排放系统结合软测量技术在国内外燃煤电厂的应用进行展望。展开更多
Impact detecting and counting are fundamental functions of fuses used in hard target penetration weapons.However,detection failure caused by battery breakdown in high-g acceleration environments poses a vulnerability ...Impact detecting and counting are fundamental functions of fuses used in hard target penetration weapons.However,detection failure caused by battery breakdown in high-g acceleration environments poses a vulnerability for such weapons.This paper introduces a novel supercapacitor that combines energy storage and high-g impact detection,called self-sensing supercapacitor.By deliberately inducing a transient soft short-circuit during shock in the supercapacitor,it is possible to detect external impact by its transient voltage drop.To realize this concept,firstly,by introducing the contact theory and force-induced percolation model,the electrode strength and roughness are found to have key impacts on the formation of soft circuits.Subsequently,to meet the needs for sensitivity and capacity,a high-density porous carbon(HDPC)that combines high mechanical strength and porosity,is selected as a suitable candidate based on the analysis results.Furthermore,a two-step curing method is proposed to prepare the high-roughness HDPC(HRHDPC)electrode and to assemble the self-sensing supercapacitor.Due to the rich specific surface of the electrodes and the high surface strength and roughness conducive to the formation of transient soft short circuits,the self-sensing supercapacitor not only possesses an excellent specific capacitance(171 F/g at 0.5 A/g)but also generates significant voltage response signals when subjected to high-g impacts ranging from 8000g to 31,000g.Finally,the self-sensing supercapacitor is applied to compose a successive high-g impact counting system and compared to traditional solutions(sensors and tantalum capacitors)in the military fuzes.The results show that the self-sensing supercapacitor-based system exhibits advantages in terms of size,power consumption,and counting accuracy.展开更多
基金This project is supported by Special Foundation for Major State Basic Research of China (No.G1998030415).
文摘Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.
基金the support from the National Natural Science Foundation of China(No.21676086).
文摘A novel adaptive subspace ensemble slow feature regression model was developed for soft sensing application.Compared to traditional single models and random subspace models,the proposed method is improved in three aspects.Firstly,sub-datasets are constructed through slow feature directions and variables in each subdatasets are selected according to the output related importance index.Then,an adaptive slow feature regression is presented for sub-models.Finally,a Bayesian inference strategy based on a slow feature analysis process that monitors statistics is developed for probabilistic combination.Two industrial examples were used to evaluate the proposed method.
基金National Natural Science Foundation of China(No.51467008)。
文摘Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is proposed.Orthogonal projections to latent structures(O-PLS)is a general linear multi-variable data modeling method.It can eliminate systematic variations from descriptive variables(input)that are orthogonal to response variables(output).In the framework of O-PLS model,K-OPLS method maps descriptive variables to high-dimensional feature space by using“kernel technique”to calculate predictive components and response-orthogonal components in the model.Therefore,the K-OPLS method gives the non-linear relationship between the descriptor and the response variables,which improves the performance of the model and enhances the interpretability of the model to a certain extent.To verify the validity of K-OPLS method,it was applied to soft sensing modeling of component content of debutane tower base butane(C4),the quality index of the key product output for industrial fluidized catalytic cracking unit(FCCU)and H 2S and SO 2 concentration in sulfur recovery unit(SRU).Compared with support vector machines(SVM),least-squares support-vector machine(LS-SVM),support vector machine with principal component analysis(PCA-SVM),extreme learning machine(ELM),kernel based extreme learning machine(KELM)and kernel based extreme learning machine with principal component analysis(PCA-KELM)methods under the same conditions,the experimental results show that the K-OPLS method has superior modeling accuracy and good model generalization ability.
基金Item Sponsored by National Natural Science Foundation of China(59995440)Doctoral Program of Higher Education Foundation of China(97014515)
文摘Aiming at the water temperature measuring problem for controlled cooling system of rolling plant,a new water temperature measuring method based on soft-sensing method with a water temperature model of on-line self correction parameter was built.A water temperature compensation factor model was also built to improve coiling temperature control precision.It was proved that the model meets production requirements.The soft-sensing technique has extensive applications in the field of metal forming.
文摘Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but are still not robust enough to get satisfactory results for failing to extract enough information from the original images. To take full advantage of various features of shadows, a new method combining edges information with the spectral and spatial information is proposed in this paper. As known, edge is one of the most important characteristics in the high-resolution remote-sensing images. Unfortunately, in shadow detection, it is a high-risk strategy to determine whether a pixel is the edge or not strictly because intensity values on shadow boundaries are always between those in shadow and non-shadow areas. Therefore, a soft edge description model is developed to describe the degree of each pixel belonging to the edges or not. Sequentially, the soft edge description is incorporating to a fuzzy clustering procedure based on HMRF (Hidden Markov Random Fields), in which more appropriate spatial contextual information can be used. More concretely, it consists of two components: the soft edge description model and an iterative shadow detection algorithm. Experiments on several remote sensing images have shown that the proposed method can obtain more accurate shadow detection results.
基金Projects(61203287,61302138,11126274)supported by the National Natural Science Foundation of ChinaProject(2013CFB414)supported by Natural Science Foundation of Hubei Province,ChinaProject(CUGL130247)supported by the Special Fund for Basic Scientific Research of Central Colleges of China University of Geosciences
文摘A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.
文摘火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排放量变得至关重要。在燃煤电厂碳计量中,烟气流量影响燃煤发电中在线监测法的精度,而燃煤消耗量、燃煤元素碳含量以及飞灰碳含量共同决定核算法的可靠性。目前,大多数燃煤发电企业只对流量和燃煤消耗量进行实时监测,在现场恶劣的环境中对燃煤元素碳含量以及飞灰碳含量进行短周期、高频次的直接监测需要花费较大的人力以及物力,流量监测设备也易受烟道环境影响。而软测量技术以其高效和低成本的特点,可为传统碳排放计量过程中关键参数的监测提供一种替代方法。鉴于此,首先阐述了软测量模型的建立过程,包含数据预处理、辅助变量选择、软测量模型建立以及模型校正。数据预处理能够确保数据质量,提高建模效率;辅助变量选择是从大量潜在的变量中筛选出对目标变量的辅助变量,进一步提高建模效率;软测量模型建立主要是基于机理建模和数据驱动建模,是实现目标变量预测的核心;模型校正通过实际的离线或在线数据,对模型进行进一步优化,提高模型的预测精度。其次,针对碳计量相关参数,分析了烟气流量、燃煤消耗量、燃煤元素碳含量和飞灰碳含量监测存在的问题,论述了软测量技术在上述碳计量关键参数的国内外研究进展和应用,评估了机理建模和数据驱动建模技术的有效性、准确性和实用性。其中,机理分析建模主要基于电厂锅炉进出口的能量平衡以及烟风质量守恒等原理,有着确定的数学物理关系式,具有高度可解释性和稳定性,但是建模过程复杂,预测精度较低;数据驱动建模主要是利用各种机器学习方法,基于电厂分布式控制系统(Distributed control system,DCS)丰富的运行数据,对碳计量关键参数进行“黑箱建模”,克服了机理分析建模复杂的过程分析,精度相对较高,但是建模过程不明确,且模型对于不同机组的泛化能力较差。最后,对于软测量技术在碳排放计量领域的发展应用进行了总结与展望。对电厂各参数之间的时序结构、电厂自身计算能力的限制以及机理分析融合数据驱动方法的发展提出相关建议,并对国外二氧化碳预测性排放系统结合软测量技术在国内外燃煤电厂的应用进行展望。
基金supported in part by the National Natural Science Foundation of China(No.52007084)by the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘Impact detecting and counting are fundamental functions of fuses used in hard target penetration weapons.However,detection failure caused by battery breakdown in high-g acceleration environments poses a vulnerability for such weapons.This paper introduces a novel supercapacitor that combines energy storage and high-g impact detection,called self-sensing supercapacitor.By deliberately inducing a transient soft short-circuit during shock in the supercapacitor,it is possible to detect external impact by its transient voltage drop.To realize this concept,firstly,by introducing the contact theory and force-induced percolation model,the electrode strength and roughness are found to have key impacts on the formation of soft circuits.Subsequently,to meet the needs for sensitivity and capacity,a high-density porous carbon(HDPC)that combines high mechanical strength and porosity,is selected as a suitable candidate based on the analysis results.Furthermore,a two-step curing method is proposed to prepare the high-roughness HDPC(HRHDPC)electrode and to assemble the self-sensing supercapacitor.Due to the rich specific surface of the electrodes and the high surface strength and roughness conducive to the formation of transient soft short circuits,the self-sensing supercapacitor not only possesses an excellent specific capacitance(171 F/g at 0.5 A/g)but also generates significant voltage response signals when subjected to high-g impacts ranging from 8000g to 31,000g.Finally,the self-sensing supercapacitor is applied to compose a successive high-g impact counting system and compared to traditional solutions(sensors and tantalum capacitors)in the military fuzes.The results show that the self-sensing supercapacitor-based system exhibits advantages in terms of size,power consumption,and counting accuracy.