期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
MODELLING OF MECHANICAL MECHANISM OF CHROMATOGRAPHIC SYSTEM AND THEORETICAL EQUATIONS SHOWING DYNAMICAL CHARACTERISTICS OF CHROMATOGRAPHY
1
作者 Wei Qun DENG, Jin Fa YANG Fujian Geological Analysis and Testing Research Center,Fuzhou,350002 Yun DENG Department of Chemical Engineering, University of Waterloo, Canada N2L 3GI 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第7期547-550,共4页
A simple model of chromatographic mechanical mechanism is present, and then a scrics of theoretical chromatographic equations and fundamental Formulae are derived. These theoretical equations and formulae not only res... A simple model of chromatographic mechanical mechanism is present, and then a scrics of theoretical chromatographic equations and fundamental Formulae are derived. These theoretical equations and formulae not only reserve thermodynamic characteristics in the current fundamental chromatographic formulae, but also introduce one or more kinetic parameter, so it is possible to make the macroscopic-control on the effect of kinetic characteristics on chromatographic system. 展开更多
关键词 MODELLING OF MECHANICAL MECHANISM OF CHROMATOGRAPHIC SYSTEM AND THEORETICAL EQUATIONS SHOWING dynamical characteristics OF CHROMATOGRAPHY 月山
下载PDF
GENERAL DYNAMIC EQUATION AND DYNAMICAL CHARACTERISTICS OF VISCOELASTIC TIMOSHENKO BEAMS
2
作者 肖灿章 计伊周 常保平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第2期177-184,共8页
In this paper, a governing differential equation of viscoelastic Timoshenko beam including both extension and shear viscosity is developed in the time domain by direct method. To measure the complex moduli and three p... In this paper, a governing differential equation of viscoelastic Timoshenko beam including both extension and shear viscosity is developed in the time domain by direct method. To measure the complex moduli and three parameters of standard linear solid, the forced vibration technique of beam is successfully used for PCL and PMMA specimens. The dynamical characteristics of viscoelastic Timoshenko beams, especially the damping properties, are derived from a considerable number of numerical computations. The analyses show that the viscosity of materials has great influence on dynamical characteristics of structures, especially on damping, and the standard linear solid model is the better one for describing the dynamic behavior of high viscous materials. 展开更多
关键词 GENERAL DYNAMIC EQUATION AND dynamical characteristics OF VISCOELASTIC TIMOSHENKO BEAMS
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review 被引量:1
3
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
4
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Spalling characteristics of high-temperature treated granitic rock at different strain rates
5
作者 L.F.Fan Q.H.Yang X.L.Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1280-1288,共9页
The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen... The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate. 展开更多
关键词 Dynamic spalling characteristics High temperature Strain rate Dynamic loading GRANITE
下载PDF
Analysis of mesoscopic mechanical dynamic characteristics of ballast bed with under sleeper pads
6
作者 Xiong Yang Liuyang Yu +3 位作者 Xuejun Wang Zhigang Xu Yu Deng Houxu Li 《Railway Engineering Science》 EI 2024年第1期107-123,共17页
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann... The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed. 展开更多
关键词 Under sleeper pads Ballast bed Discrete element method Mesoscopic mechanical dynamic characteristics
下载PDF
Practice on Gravity-1 Rocket Dynamic Characteristics Design
7
作者 BU Xiangwei SONG Yinghui HUANG Shuai 《Aerospace China》 2024年第1期9-17,共9页
Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the c... Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the cost and duration of such tests have significantly increased, magnifying their impact on model development. This article follows the process of the modal testing practice of the Gravity-1 rocket, reviewing and summarizing the design process of the rocket's dynamic characteristics. Initially, the article introduces common modeling techniques for launch rockets, including the mass-beam model and the hybrid element model. It then discusses the relationship between the structural dynamics model of the launch rocket and modal testing, aiming to reduce testing costs through refined structural dynamics modeling methods. Subsequently, the article describes the dynamic characteristics design process of the Gravity-1 carrier rocket, categorizes structural parameters, and studies how the selection of structural parameters affects the predicted dynamic characteristics of the rocket. Finally, it elaborates on the design of the modal testing scheme and the dynamic characteristics design based on the test data. 展开更多
关键词 Gravity-1 dynamic characteristics modal testing structural dynamics model
下载PDF
Dynamic stiffness characteristics of aero-engine elastic support structure and its effects on rotor systems:mechanism and numerical and experimental studies 被引量:4
8
作者 Lei LI Zhong LUO +1 位作者 Kaining LIU Jilai ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期221-236,共16页
The support structure of a rotor system is subject to vibration excitation,which results in the stiffness of the support structure varying with the excitation frequency(i.e.,the dynamic stiffness).However,the dynamic ... The support structure of a rotor system is subject to vibration excitation,which results in the stiffness of the support structure varying with the excitation frequency(i.e.,the dynamic stiffness).However,the dynamic stiffness and its effect mechanism have been rarely incorporated in open studies of the rotor system.Therefore,this study theoretically reveals the effect mechanism of dynamic stiffness on the rotor system.Then,the numerical study and experimental verification are conducted on the dynamic stiffness characteristics of a squirrel cage,which is a common support structure for aero-engine.Moreover,the static stiffness experiment is also performed for comparison.Finally,a rotor system model considering the dynamic stiffness of the support structure is presented.The presented rotor model is used to validate the results of the theoretical analysis.The results illustrate that the dynamic stiffness reduces the critical speed of the rotor system and may lead to a new resonance. 展开更多
关键词 dynamic stiffness squirrel cage rotor system dynamic characteristic critical speed
下载PDF
Dynamic mechanical characteristics of NdFeB in electromagnetic brake 被引量:1
9
作者 Lei Li Guo-lai Yang Li-qun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期111-125,共15页
With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electr... With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring. 展开更多
关键词 Electromagnetic brake Sintered NdFeB Damage constitutive Dynamic mechanical characteristics
下载PDF
Research on dynamic characteristics of arc under electrode relative motion
10
作者 董克亮 吴广宁 +5 位作者 钱鹏宇 许之磊 马亚光 杨泽锋 高国强 魏文赋 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期128-137,共10页
The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact ... The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact system.In this paper,an arcing experimental platform that can accurately control the relative speed and distance of electrodes is built,and the influence of different electrode speeds and electrode distances on arc motion characteristics is explored.It is found that there are three different modes of arc root motion:single arc root motion mode,single and double arc roots alternating motion mode,and multiple arc roots motion mode.The physical process and influence mechanism of different arc root motion modes are further studied,and the corresponding relationship between arc root motion modes and electrode speed is revealed.In addition,to further explore the distribution characteristics of arc temperature and its influencing factors,an arc magnetohydrodynamic model under the relative motion of electrodes is established,and the variation law of arc temperature under the effect of different electrode speeds and electrode distances is summarized.Finally,the influence mechanism of electrode speed and electrode distance on arc temperature,arc root distance,and arc root speed is clarified.The research results enrich the research system of arc dynamic characteristics in the field of sliding electrical contact,and provide theoretical support for restraining arc erosion and improving the service life of the sliding electrical contact system. 展开更多
关键词 sliding electric contact arc dynamic characteristics electrode relative motion arc root movement
下载PDF
Physical modeling of long-term dynamic characteristics of the subgrade for medium-low-speed maglevs
11
作者 Minqi Dong Wubin Wang +4 位作者 Chengjin Wang Zhichao Huang Zhaofeng Ding Zhixing Deng Qian Su 《Railway Engineering Science》 2023年第3期293-308,共16页
To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and ... To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability. 展开更多
关键词 Medium-low-speed maglev SUBGRADE Dynamic characteristics Long-term dynamic stability Model test
下载PDF
Dynamic response characteristics of a circular lined tunnel under anisotropy frost heave of overlying soil at the tunnel portal section in cold regions
12
作者 ZHANG Shuo-cheng CHEN Wen-hua 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1424-1440,共17页
The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmo... The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5. 展开更多
关键词 Frost heave Tunnel portal section Relative movement Dynamic response characteristics Cold region
下载PDF
Dynamic physical characteristics of DC arc on arcing horn for HVDC grounding electrode line
13
作者 刘益岑 杨晨光 +4 位作者 郭裕钧 张血琴 肖嵩 高国强 吴广宁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期80-87,共8页
The dynamic physical characteristics of a DC arc on an arcing horn for a high voltage direct current(HVDC)grounding electrode line are significantly different from those of the switching device arc,secondary arc,AC fa... The dynamic physical characteristics of a DC arc on an arcing horn for a high voltage direct current(HVDC)grounding electrode line are significantly different from those of the switching device arc,secondary arc,AC fault arc and pantograph-catenary arc.In this work,an experimental platform for the DC arc on the arcing horn was built,and mechanisms of the arc column short circuit and arc root movement were studied.This work further analyzes the characteristics and mechanisms of the arc motion when wind speed and direction,magnetic field and the expansion angle of the electrode are varied.Arc root movement is more likely to occur at the upper electrode.There is a competitive relationship between arc expansion and the transferring effect.The effect of wind on the arc column is greater than the effect on the arc root.The magnetic field has a significant driving effect on both the arc column and the arc root.The research results provide a comprehensive experimental basis for forther probing the method of DC arc suppression,and the improvement of the arcing horn. 展开更多
关键词 grounding electrode line arcing horn DC arc dynamic physical characteristics
下载PDF
Review on Dynamic Modeling and Vibration Characteristics of Rotating Cracked Blades
14
作者 Hui Ma Zhiyuan Wu +4 位作者 Jin Zeng Weiwei Wang Hongji Wang Hong Guan Wenming Zhang 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第4期207-227,共21页
As one of the most important parts in the engine,the structure and state of the rotating blade directly affect the normal performance of the aeroengine.In order to monitor engine crack failure and ensure flight safety... As one of the most important parts in the engine,the structure and state of the rotating blade directly affect the normal performance of the aeroengine.In order to monitor engine crack failure and ensure flight safety,it is necessary to carry out research on the dynamic modeling of the cracked blade and breathing crack-induced vibration mechanisms.This paper summarizes the current research status on the dynamics of cracked blade,and the related topics mainly include four aspects:crack propagation path,mechanical model of open and breathing cracks,dynamic modeling methods of cracked blades such as lumped mass model,semi-analytical model and finite element model,and dynamic characteristics of cracked blades.The review will provide valuable references for future studies on dynamics and fault diagnosis of cracked blade in aeroengine. 展开更多
关键词 breathing crack crack propagation cracked blade dynamic characteristics dynamic modeling
下载PDF
Vibration Control of the Rail Grinding Vehicle with Abrasive Belt Based on Structural Optimization and Lightweight Design
15
作者 Wengang Fan Shuai Zhang +2 位作者 Zhiwei Wu Yi Liu Jiangnan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期311-337,共27页
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan... As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment. 展开更多
关键词 Vibration control Dynamic characteristics Structural optimization Lightweight design Modal analysis
下载PDF
Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes
16
作者 Jixue Shen Bao Zhang +4 位作者 Changwang Hao Xiao Li Zhiming Xiao Xinyou He Xing Ou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1045-1057,共13页
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic... Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances. 展开更多
关键词 Li/Ni antisite defect Dynamic characteristic HIGH-VOLTAGE SINGLE-CRYSTAL Ni-rich Co-free cathodes Lithium-ion batteries
下载PDF
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system
17
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Three‑dimensional numerical simulation of dynamic strength and failure mode of a rock mass with cross joints
18
作者 Tingting Liu Wenxu Huang +3 位作者 Chang Xiang Qian Dong Xinping Li Chao Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期35-52,共18页
To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence... To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions. 展开更多
关键词 Cross joints Joint distribution form Dynamic failure characteristics FEM–DEM BHPB
下载PDF
Research of transient rotor dynamic characteristic of magnetic liquid double suspension bearing in double collision state
19
作者 刘洪美 LI Shengguo +2 位作者 SUN Chao SUN Yanan ZHAO Jianhua 《High Technology Letters》 EI CAS 2024年第2期146-157,共12页
During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clear... During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clearance,resulting in the collision damage between the rotor and the stator,the rotor and the casing.This paper presents a method to simulate the influence of different factors on the dynamic characteristics of 5 degrees of freedom(DOF)rotor based on the dynamic model of MLDSB.Firstly,according to the second Lagrange equation,the dynamic equation of 5 DOF rotor is derived,and the mathematical model is established.Then,based on 5 DOF rotor dynamic equation,the rotor transient dynamic equation under collision state is obtained,and the rotor transient collision dynamic simulation model is established.Finally,the key influencing factors of rotor dynamic characteristics are extracted,and the influence mapping relationship of rotor displacement,axis locus and stress distribution under different factors is simulated by using ANSYS Workbench software.The experimental results show that this method can effectively reflect the influence of various factors on the dynamic characteristics of the rotor.This method can provide theoretical reference for the design and control of MLDSB. 展开更多
关键词 displacement response axis trajectory radial excitation peak radial excitationtimes transient dynamic characteristics
下载PDF
Research on the Resistance of Cutting Mechanism of Mining Longitudinal Roadheader
20
作者 Mengjiao NIU Yong ZHAO Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期8-12,共5页
In order to accurately obtain the dynamic characteristics of the cutting mechanism of the mining longitudinal roadheader,combined with the working principle of the mining longitudinal roadheader,the theoretical analys... In order to accurately obtain the dynamic characteristics of the cutting mechanism of the mining longitudinal roadheader,combined with the working principle of the mining longitudinal roadheader,the theoretical analysis and derivation are carried out in detail.By using ADAMS to simulate,the resistance curve and torque curve of the cutting mechanism in different directions are obtained.The results show that ADAMS can effectively predict the excavation resistance and torque of the cutting mechanism of mining longitudinal roadheader,which has certain reference value for future optimization design. 展开更多
关键词 longitudinal roadheader cutting mechanism dynamic characteristics DYNAMICS
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部