期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The dynamic compensation temperature in a kinetic spin-5/2 Ising model on a hexagonal lattice
1
作者 mt Temizer Aysegl Ozkιlι 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期471-480,共10页
We present a study of the dynamic behavior of a two-sublattice spin-5/2 Ising model with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on alternating l... We present a study of the dynamic behavior of a two-sublattice spin-5/2 Ising model with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on alternating layers of a hexagonal lattice by using the Glauber-type stochastic dynamics.The lattice is formed by alternate layers of spins σ=5/2 and S=5/2.We employ the Glauber transition rates to construct the mean-field dynamic equations.First,we investigate the time variations of the average sublattice magnetizations to find the phases in the system and then the thermal behavior of the dynamic sublattice magnetizations to characterize the nature(first-or second-order) of the phase transitions and to obtain the dynamic phase transition(DPT) points.We also study the thermal behavior of the dynamic total magnetization to find the dynamic compensation temperature and to determine the type of the dynamic compensation behavior.We present the dynamic phase diagrams,including the dynamic compensation temperatures,in nine different planes.The phase diagrams contain seven different fundamental phases,thirteen different mixed phases,in which the binary and ternary combination of fundamental phases and the compensation temperature or the L-type behavior strongly depend on the interaction parameters. 展开更多
关键词 kinetic Ising model dynamic phase transition dynamic compensation temperature
下载PDF
Precise control of a magnetically suspended double-gimbal control moment gyroscope using differential geometry decoupling method 被引量:3
2
作者 Chen Xiaocen Chen Maoyin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1017-1028,共12页
Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and s... Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and strong coupled properties. This paper proposes a novel linearization and decoupling method based on differential geometry theory and combines it with the internal model controller (IMC) to guarantee the system robustness to the external disturbance and parameter uncertainty. Furthermore, by introducing the dynamic compensation for the inner-gimbal rate-servo system and the magnetically suspended rotor (MSR) system only, we can eliminate the influence of the unmodeled dynamics to the decoupling control accuracy as well as save costs and inhibit noises effectively. The simulation results verify the nice decoupling and robustness performance of the system using the proposed method. 展开更多
关键词 Differential geometry decoupling Dynamic compensation Internal model controller MSDGCMG Spacecraft control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部