The conformers of allyl alcohol and allyl mercaptan were studied with B3LYP/aug-cc-pVTZ method. Their relative energies were calculated at MP3, MP4(SDQ), and CCSD(T) levels. The most stable conformers for these tw...The conformers of allyl alcohol and allyl mercaptan were studied with B3LYP/aug-cc-pVTZ method. Their relative energies were calculated at MP3, MP4(SDQ), and CCSD(T) levels. The most stable conformers for these two molecules are Gauche-gauche' (Gg'). The theo-retical photoelectron spectra simulated with the calculated ionization energies demonstrate that there are at least four conformers in allyl alcohol and four conformers in allyl mercaptan in the gas-phase experiments. The Dyson orbitals of the highest occupied molecular orbital (HOMO) and the next HOMO (HOMO-1) of allyl mercaptan Ggt conformer show strongly mixing ns and πc=c characteristics, which may be due to the resonance and inductive effects between πc=c and ns in HOMO-1 and HOMO.展开更多
We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies,...We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.展开更多
Based on the Dyson-Schwinger equations of quark propagator in rainbow truncation with an effective gluonpropagator,the ten unknown Gasser-Leutwyler coefficients of the chiral Lagrangian for pseudoscalar Goldstone boso...Based on the Dyson-Schwinger equations of quark propagator in rainbow truncation with an effective gluonpropagator,the ten unknown Gasser-Leutwyler coefficients of the chiral Lagrangian for pseudoscalar Goldstone bosonsare predicted.The predicted values of L_i with i=1,2,...,10 are in a reasonable agreement with empirical values usedwidely in literature,and the values predicted by many other theoretical models with QCD characteristics.展开更多
Based on the Dyson–Schwinger equations of QCD in the 'rainbow' approximation, the fully dressed quark propagator is investigated, and then an algebraic parametrization form of the propagator is obtained as a...Based on the Dyson–Schwinger equations of QCD in the 'rainbow' approximation, the fully dressed quark propagator is investigated, and then an algebraic parametrization form of the propagator is obtained as a solution of the equations. The dressed quark amplitudes and built up the fully dressed quark propagator and the dynamical running masses defined by and for light quarks u, d and s are calculated, respectively. Using the predicted running masses , quark condensates for u, d quarks, and for s quark, and experimental pion decay constant , the masses of Goldstone bosons K, π, and η are also evaluated. The numerical results show that the masses of quarks are dependent on their momentum . The fully dressed quark amplitudes and have correct behaviors which can be used for many purposes in our future researches on nonperturbative QCD.展开更多
In quantum chromodynamics (QCD), the scalar susceptibility represents the modification of the quark condensate, to a small perturbation of the parameter responsible for the explicit breaking of the symmetry, i.e., t...In quantum chromodynamics (QCD), the scalar susceptibility represents the modification of the quark condensate, to a small perturbation of the parameter responsible for the explicit breaking of the symmetry, i.e., the current quark mass. By studying the linear response of the dressed quark propagator to the presence of a nonzero quark mass, we derive a model-independent formula for the scalar susceptibility, which contains the dressed quark propagator G(p) and the dressed scalar vertex F(p, 0). The numerical values of the scalar susceptibility Xs are calculated within the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach by employing two typical forms of model gluon propagator.展开更多
By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equati...By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equation for quark propagator in Landau gauge. Denote the inverse quark propagator by A(p^2)ψ - B(p^2), we argue that, when temperature T is lower than the given infrared momentum cutoff pc, A(p^2) = 1 is a feasible approximation and can be assumed in discussions of chiral symmetry phase transition problem in QCD.展开更多
The pion and tensor vacuum susceptibilities are calculated in the framework of the renormalizable DysonSchwinger equations. A comparison with the results of other nonperturbative QCD approaches is given.
文摘The conformers of allyl alcohol and allyl mercaptan were studied with B3LYP/aug-cc-pVTZ method. Their relative energies were calculated at MP3, MP4(SDQ), and CCSD(T) levels. The most stable conformers for these two molecules are Gauche-gauche' (Gg'). The theo-retical photoelectron spectra simulated with the calculated ionization energies demonstrate that there are at least four conformers in allyl alcohol and four conformers in allyl mercaptan in the gas-phase experiments. The Dyson orbitals of the highest occupied molecular orbital (HOMO) and the next HOMO (HOMO-1) of allyl mercaptan Ggt conformer show strongly mixing ns and πc=c characteristics, which may be due to the resonance and inductive effects between πc=c and ns in HOMO-1 and HOMO.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774035)the Qianjiang RenCai Program of Zhejiang Province,China(Grant No.2007R0010)
文摘We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.
基金supported in part by National Natural Science Foundation of China under Grant Nos.10647002 and 10565001the Natural Science Foundation of Guangxi under Grant Nos.0542042,0481030,and 0575020
文摘Based on the Dyson-Schwinger equations of quark propagator in rainbow truncation with an effective gluonpropagator,the ten unknown Gasser-Leutwyler coefficients of the chiral Lagrangian for pseudoscalar Goldstone bosonsare predicted.The predicted values of L_i with i=1,2,...,10 are in a reasonable agreement with empirical values usedwidely in literature,and the values predicted by many other theoretical models with QCD characteristics.
文摘Based on the Dyson–Schwinger equations of QCD in the 'rainbow' approximation, the fully dressed quark propagator is investigated, and then an algebraic parametrization form of the propagator is obtained as a solution of the equations. The dressed quark amplitudes and built up the fully dressed quark propagator and the dynamical running masses defined by and for light quarks u, d and s are calculated, respectively. Using the predicted running masses , quark condensates for u, d quarks, and for s quark, and experimental pion decay constant , the masses of Goldstone bosons K, π, and η are also evaluated. The numerical results show that the masses of quarks are dependent on their momentum . The fully dressed quark amplitudes and have correct behaviors which can be used for many purposes in our future researches on nonperturbative QCD.
基金The project supported in part by National Natural Science Foundation of China under Grant No.10575050the Research Fund for the Doctoral Program of Higher Education under Grant No.20060284020
文摘In quantum chromodynamics (QCD), the scalar susceptibility represents the modification of the quark condensate, to a small perturbation of the parameter responsible for the explicit breaking of the symmetry, i.e., the current quark mass. By studying the linear response of the dressed quark propagator to the presence of a nonzero quark mass, we derive a model-independent formula for the scalar susceptibility, which contains the dressed quark propagator G(p) and the dressed scalar vertex F(p, 0). The numerical values of the scalar susceptibility Xs are calculated within the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach by employing two typical forms of model gluon propagator.
文摘By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equation for quark propagator in Landau gauge. Denote the inverse quark propagator by A(p^2)ψ - B(p^2), we argue that, when temperature T is lower than the given infrared momentum cutoff pc, A(p^2) = 1 is a feasible approximation and can be assumed in discussions of chiral symmetry phase transition problem in QCD.
文摘The pion and tensor vacuum susceptibilities are calculated in the framework of the renormalizable DysonSchwinger equations. A comparison with the results of other nonperturbative QCD approaches is given.