The E-field of pulse line ion accelerator (PLIA) is unique with high frequency (~MHz), large magni- tude (~MV/m), and limited measuring space (~cm). The integrated optical E-field sensor (IOES) has remarkabl...The E-field of pulse line ion accelerator (PLIA) is unique with high frequency (~MHz), large magni- tude (~MV/m), and limited measuring space (~cm). The integrated optical E-field sensor (IOES) has remarkable advantages and has been used for PLIA E-field measurement. Firstly, the transfer function of the IOES has been calibrated to ensure measurement accuracy. The time-domain response illustrates that the sensor has a fast dynamic performance to effectively follow a 4 ns rising edge. Then, the E-field distribution along the axis and near the insula- tor surface of the PLIA was measured, showing that propagation of the E-field is almost lossless and the E-field near the insulation surface is about 1.1 times larger than that along the axis, which is in accordance with the simulation result.展开更多
基金Supported by Fund of National Priority Basic Research of China (2011CB209403)National Natural Science Foundation of China(51107063)
文摘The E-field of pulse line ion accelerator (PLIA) is unique with high frequency (~MHz), large magni- tude (~MV/m), and limited measuring space (~cm). The integrated optical E-field sensor (IOES) has remarkable advantages and has been used for PLIA E-field measurement. Firstly, the transfer function of the IOES has been calibrated to ensure measurement accuracy. The time-domain response illustrates that the sensor has a fast dynamic performance to effectively follow a 4 ns rising edge. Then, the E-field distribution along the axis and near the insula- tor surface of the PLIA was measured, showing that propagation of the E-field is almost lossless and the E-field near the insulation surface is about 1.1 times larger than that along the axis, which is in accordance with the simulation result.