For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have p...The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have predominantly centered on individual or specific crop types,using methods such as remote sensing or statistical metrological analysis.In this study,we characterize the agricultural production space(APS)by bipartite network connecting agricultural products and provinces,to reveal the relatedness between diverse agricultural products and the spatiotemporal characteristic of provincial production capabilities in China.The results show that core products are cereal,pork,melon,and pome fruit;meanwhile the milk,grape,and fiber crop show an upward trend in centrality,which is in line with diet structure changes in China over the past decades.The little changes in community components and structures of agricultural products and provinces reveal that agricultural production patterns in China are relatively stable.Additionally,identified provincial communities closely resemble China's agricultural natural zones.Furthermore,the observed growth in production capabilities in North and Northeast China implies their potential focus areas for future agricultural production.Despite the superior production capa-bilities of southern provinces,recent years have witnessed a notable decline,warranting special attentions.The findings provide a comprehensive perspective for understanding the complex relationship of agricultural prod-ucts'relatedness,production capabilities and production patterns,which serve as a reference for the agricultural spatial optimization and agricultural sustainable development.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function ...We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.展开更多
In this article, we obtain the sharp bounds from LP(Gn) to the space wLP(Gn) for Hardy operators on product spaces. More generally, the precise norms of Hardy operators on product spaces from LP(Gn) to the space...In this article, we obtain the sharp bounds from LP(Gn) to the space wLP(Gn) for Hardy operators on product spaces. More generally, the precise norms of Hardy operators on product spaces from LP(Gn) to the space LPI (Gn) are obtained.展开更多
This paper investigates sober spaces and their related structures from different perspectives.First,we extend the descriptive set theory of second countable sober spaces to first countable sober spaces.We prove that a...This paper investigates sober spaces and their related structures from different perspectives.First,we extend the descriptive set theory of second countable sober spaces to first countable sober spaces.We prove that a first countable T_(0) space is sober if and only if it does not contain a∏_(2)^(0)-subspace homeomorphic either to S_(D),the natural number set equipped with the Scott topology,or to S_(1),the natural number set equipped with the cofinite topology,and it does not contain any directed closed subset without maximal elements either.Second,we show that if Y is sober,the function space TOP(X,Y)equipped with the Isbell topology(respectively,Scott topology)may be a non-sober space.Furthermore,we provide a uniform construction to d-spaces and well-filtered spaces via irreducible subset systems introduced in[9];we called this an H-well-filtered space.We obtain that,for a T_(0) space X and an H-well-filtered space Y,the function space TOP(X,Y)equipped with the Isbell topology is H-well-filtered.Going beyond the aforementioned work,we solve several open problems concerning strong d-spaces posed by Xu and Zhao in[11].展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
By means of vector-valued product Calderón-Zygmund operators and some subtle estimates,the boundedness in product Hardy spaces on R^n × R^m of Calderón-Zygmund operators introduced by J.L. Journé i...By means of vector-valued product Calderón-Zygmund operators and some subtle estimates,the boundedness in product Hardy spaces on R^n × R^m of Calderón-Zygmund operators introduced by J.L. Journé is established.展开更多
In this survey report, we shall mainly summarize some recent progress, interesting problems and typical methods used in the theory related to rough Marcinkiewicz integrals and rough singular integrals on product space...In this survey report, we shall mainly summarize some recent progress, interesting problems and typical methods used in the theory related to rough Marcinkiewicz integrals and rough singular integrals on product spaces. In addition, we give new proofs for some known results.展开更多
Let {(Xi, Si, μi) : i ℃ N} be a sequence of probability measure spaces and (*Xi, L(*Si), L(*μi)) be the Loeb measure space with respect to (Xi, Si, μi) for i ℃ N. Let X =× Xi, S = ×Si,μ = ×μi. We...Let {(Xi, Si, μi) : i ℃ N} be a sequence of probability measure spaces and (*Xi, L(*Si), L(*μi)) be the Loeb measure space with respect to (Xi, Si, μi) for i ℃ N. Let X =× Xi, S = ×Si,μ = ×μi. We prove that × L(*Si) CL(*S) and in embedding meaning.展开更多
A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several exist...A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several exist...A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). ...In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.展开更多
By using the Littlewood-Paley decomposition and the interpolation theory, we prove the boundedness of fractional integral on the product Triebel-Lizorkin spaces with a rough kernel related to the product block spaces.
We prove, using the fixed point approach, some results on hyperstability (in normed spaces) of the equation that defines the generalization of p-Wright affine functions and show that they yield a simple characteriza...We prove, using the fixed point approach, some results on hyperstability (in normed spaces) of the equation that defines the generalization of p-Wright affine functions and show that they yield a simple characterization of the complex inner product spaces.展开更多
Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective...Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective and projective tensor product spaces E F and E F. Special attention is paid to l2 l2. In addition, two counter-examples are given.展开更多
In this paper, first introduce and define an intuitionistic Menger inner product space, and then, obtain a new fixed point theorem in a complete intuitionistic Menger inner product space. As an application, the result...In this paper, first introduce and define an intuitionistic Menger inner product space, and then, obtain a new fixed point theorem in a complete intuitionistic Menger inner product space. As an application, the results are used to study the existence and uniqueness of the solution to a linear Volterra integral equation.展开更多
In [1],a family of angles are defined in normed linear spaces. In this paper,it is shown that if anyone of the angles satisfies certain euclidean triangle congruence properties,the space must be an inner product space.
Commutators of Calderon-Zygmund operators on product spaces to be study in the paper is the commutators of Sarah H Ferguson and Michael T Lacey. The L^P boundedness of the nested commutators is proved on product space...Commutators of Calderon-Zygmund operators on product spaces to be study in the paper is the commutators of Sarah H Ferguson and Michael T Lacey. The L^P boundedness of the nested commutators is proved on product spaces, where 1<p<∞.展开更多
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.
基金supported by the Institute of Atmospheric Environment,China Meteorological Administration,Shenyang(Grant No.2021SYIAEKFMS27)Key Laboratory of Farm Building in Structure and Construction,Ministry of Agriculture and Rural Affairs,P.R.China(Grant No.202003)the National Foundation of China Scholarship Council(Grant No.202206040102).
文摘The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have predominantly centered on individual or specific crop types,using methods such as remote sensing or statistical metrological analysis.In this study,we characterize the agricultural production space(APS)by bipartite network connecting agricultural products and provinces,to reveal the relatedness between diverse agricultural products and the spatiotemporal characteristic of provincial production capabilities in China.The results show that core products are cereal,pork,melon,and pome fruit;meanwhile the milk,grape,and fiber crop show an upward trend in centrality,which is in line with diet structure changes in China over the past decades.The little changes in community components and structures of agricultural products and provinces reveal that agricultural production patterns in China are relatively stable.Additionally,identified provincial communities closely resemble China's agricultural natural zones.Furthermore,the observed growth in production capabilities in North and Northeast China implies their potential focus areas for future agricultural production.Despite the superior production capa-bilities of southern provinces,recent years have witnessed a notable decline,warranting special attentions.The findings provide a comprehensive perspective for understanding the complex relationship of agricultural prod-ucts'relatedness,production capabilities and production patterns,which serve as a reference for the agricultural spatial optimization and agricultural sustainable development.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金Supported by the National Natural Science Foundation of China(10931001, 10871173 and 11026104)
文摘We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.
基金supported by NSFC(11471309,11271162,and11561062)Project of Henan Provincial Department of Education(18A110028)+1 种基金the Nanhu Scholar Program for Young Scholars of XYNUDoctoral Scientific Research Startup Fund of Xinyang Normal University(2016)
文摘In this article, we obtain the sharp bounds from LP(Gn) to the space wLP(Gn) for Hardy operators on product spaces. More generally, the precise norms of Hardy operators on product spaces from LP(Gn) to the space LPI (Gn) are obtained.
文摘This paper investigates sober spaces and their related structures from different perspectives.First,we extend the descriptive set theory of second countable sober spaces to first countable sober spaces.We prove that a first countable T_(0) space is sober if and only if it does not contain a∏_(2)^(0)-subspace homeomorphic either to S_(D),the natural number set equipped with the Scott topology,or to S_(1),the natural number set equipped with the cofinite topology,and it does not contain any directed closed subset without maximal elements either.Second,we show that if Y is sober,the function space TOP(X,Y)equipped with the Isbell topology(respectively,Scott topology)may be a non-sober space.Furthermore,we provide a uniform construction to d-spaces and well-filtered spaces via irreducible subset systems introduced in[9];we called this an H-well-filtered space.We obtain that,for a T_(0) space X and an H-well-filtered space Y,the function space TOP(X,Y)equipped with the Isbell topology is H-well-filtered.Going beyond the aforementioned work,we solve several open problems concerning strong d-spaces posed by Xu and Zhao in[11].
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金supported by the National Natural Science Foundation of China(10871025)
文摘By means of vector-valued product Calderón-Zygmund operators and some subtle estimates,the boundedness in product Hardy spaces on R^n × R^m of Calderón-Zygmund operators introduced by J.L. Journé is established.
基金the Project of Development Plan of the State Key Fundamental Research Major Project of NNSFC,and NSFZJ.
文摘In this survey report, we shall mainly summarize some recent progress, interesting problems and typical methods used in the theory related to rough Marcinkiewicz integrals and rough singular integrals on product spaces. In addition, we give new proofs for some known results.
基金The Special Science Foundation (00jk207) of the Educational Committee of Shaanxi Province.
文摘Let {(Xi, Si, μi) : i ℃ N} be a sequence of probability measure spaces and (*Xi, L(*Si), L(*μi)) be the Loeb measure space with respect to (Xi, Si, μi) for i ℃ N. Let X =× Xi, S = ×Si,μ = ×μi. We prove that × L(*Si) CL(*S) and in embedding meaning.
文摘A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.
文摘A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.
基金Supported by the National Natural Science Foundation of China(11371284)the Natural Science Foundation of Henan Province(14B110037)
文摘In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.
基金The NSF(11561057,11226104)of Chinathe NSF(20151BAB211002,20151BAB201007)of Jiangxi Province+1 种基金the Science Foundation(GJJ151054,GJJ151061)of Jiangxi Education Departmentthe Scientific Research Project of Shangrao Normal University
文摘By using the Littlewood-Paley decomposition and the interpolation theory, we prove the boundedness of fractional integral on the product Triebel-Lizorkin spaces with a rough kernel related to the product block spaces.
文摘We prove, using the fixed point approach, some results on hyperstability (in normed spaces) of the equation that defines the generalization of p-Wright affine functions and show that they yield a simple characterization of the complex inner product spaces.
文摘Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective and projective tensor product spaces E F and E F. Special attention is paid to l2 l2. In addition, two counter-examples are given.
基金Project supported by the Natural Science Foundation of Yibin University (No. 2009Z01)
文摘In this paper, first introduce and define an intuitionistic Menger inner product space, and then, obtain a new fixed point theorem in a complete intuitionistic Menger inner product space. As an application, the results are used to study the existence and uniqueness of the solution to a linear Volterra integral equation.
文摘In [1],a family of angles are defined in normed linear spaces. In this paper,it is shown that if anyone of the angles satisfies certain euclidean triangle congruence properties,the space must be an inner product space.
基金Supported by the National Natural Science Foundation of China(10571182)
文摘Commutators of Calderon-Zygmund operators on product spaces to be study in the paper is the commutators of Sarah H Ferguson and Michael T Lacey. The L^P boundedness of the nested commutators is proved on product spaces, where 1<p<∞.