A single-layer design of non-uniform metasurface(MS)based circularly polarized(CP)antenna with wideband operation characteristic is proposed and investigated in this paper.The antenna is excited by a truncated corner ...A single-layer design of non-uniform metasurface(MS)based circularly polarized(CP)antenna with wideband operation characteristic is proposed and investigated in this paper.The antenna is excited by a truncated corner squared patch as a primary radiating CP source.Then,a non-uniform MS is placed in the same layer with the driven patch.Besides increasing the impedance bandwidth,the non-uniform MS also generates two additional CP bands in the high frequency band,leading to significantly increase the antenna’s overall performances.The use of non-uniform MS distinguishes our design from the other CP MS based antennas in literature,in which the MS is formed by multiple uniform unit cells and placed in different layer with the radiating element.For validation,an antenna prototype,whose overall dimensions of 0.94λ_(o)×0.94λ_(o)×0.06λ_(o) at the center operating frequency,is fabricated and experimentally tested.The measured operating bandwidth with|S11|≤−10 dB and AR≤3 dB is 27.1%(5.1–6.7 GHz)and the broadside gain within this band is from 5.7 to 7.2 dBic.Compared to the other related works,the proposed antenna has advantage of very wideband operation with single-layer design.展开更多
In this paper we present a novel nanoantenna(nantenna) design for energy harvesting. The nantenna has an 'E'shape and is placed on a Si O2 substrate. Its operation is based on the excitation of surface plasmon...In this paper we present a novel nanoantenna(nantenna) design for energy harvesting. The nantenna has an 'E'shape and is placed on a Si O2 substrate. Its operation is based on the excitation of surface plasmon polaritons through the gold arms of the E shape. By varying the lengths and widths of the arms, two overlapping working bandwidths can be achieved. This results in a wideband behavior characterized by a full width at half-maximum of about 2.2 μm centered around 3.6 μm. Two orthogonal E nantennas are placed perpendicular to each other to realize a dual-polarized nantenna. This nantenna can receive the two incident polarizations at two separate gap locations with very high isolation. The proposed structure can be used in several energy harvesting applications, such as scavenging the infrared heat from the Earth and other hot objects, in addition to optical communications.展开更多
A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS with a low-resistivity (10 Ω.cm) silicon substrate is presented. The wideband is achieved by reducing the Q factor and exciting the high-order radia...A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS with a low-resistivity (10 Ω.cm) silicon substrate is presented. The wideband is achieved by reducing the Q factor and exciting the high-order radiation modes with size optimization. The antenna uses an on-chip top layer metal as the patch and a probe station as the ground plane. The on-chip ground plane is connected to the probe station using the inner connection structure of the probe station for better performance. The simulated S11 is less than -10 dB over 46-95 GHz, which is well matched with the measured results over the available 40-67 GHz frequency range from our measurement equipment. A maximum gain of-5.55 dBi with 4% radiation efficiency at a 60 GHz point is also achieved based on Ansofi HFSS simulation. Compared with the current state-of-the-art devices, the presented antenna achieves a wider bandwidth and could be used in wideband millimeter-wave communication and image applications.展开更多
In order to overcome the narrow-bandwidth of the patch antenna, one kind of configuration which can widen the bandwidth significantly is discussed in this letter. Analyzed by the equivalent-circuits method and simulat...In order to overcome the narrow-bandwidth of the patch antenna, one kind of configuration which can widen the bandwidth significantly is discussed in this letter. Analyzed by the equivalent-circuits method and simulated by HFSS, a rule derived from simulated results that can aid to design the microstrip antennas is found. Finally, the structure parameters are optimized out, Which reaches 44.67% impedance bandwidth. Furthermore, this kind of configuration can also be applied to the multi-laver patch antenna.展开更多
文摘A single-layer design of non-uniform metasurface(MS)based circularly polarized(CP)antenna with wideband operation characteristic is proposed and investigated in this paper.The antenna is excited by a truncated corner squared patch as a primary radiating CP source.Then,a non-uniform MS is placed in the same layer with the driven patch.Besides increasing the impedance bandwidth,the non-uniform MS also generates two additional CP bands in the high frequency band,leading to significantly increase the antenna’s overall performances.The use of non-uniform MS distinguishes our design from the other CP MS based antennas in literature,in which the MS is formed by multiple uniform unit cells and placed in different layer with the radiating element.For validation,an antenna prototype,whose overall dimensions of 0.94λ_(o)×0.94λ_(o)×0.06λ_(o) at the center operating frequency,is fabricated and experimentally tested.The measured operating bandwidth with|S11|≤−10 dB and AR≤3 dB is 27.1%(5.1–6.7 GHz)and the broadside gain within this band is from 5.7 to 7.2 dBic.Compared to the other related works,the proposed antenna has advantage of very wideband operation with single-layer design.
文摘In this paper we present a novel nanoantenna(nantenna) design for energy harvesting. The nantenna has an 'E'shape and is placed on a Si O2 substrate. Its operation is based on the excitation of surface plasmon polaritons through the gold arms of the E shape. By varying the lengths and widths of the arms, two overlapping working bandwidths can be achieved. This results in a wideband behavior characterized by a full width at half-maximum of about 2.2 μm centered around 3.6 μm. Two orthogonal E nantennas are placed perpendicular to each other to realize a dual-polarized nantenna. This nantenna can receive the two incident polarizations at two separate gap locations with very high isolation. The proposed structure can be used in several energy harvesting applications, such as scavenging the infrared heat from the Earth and other hot objects, in addition to optical communications.
基金supported by the National Science and Technology Major Projects of China(No.2012ZX03004007)the National Natural Science Foundation of China(Nos.61020106006,61076029,61222405,JCYJ20120616142625998)
文摘A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS with a low-resistivity (10 Ω.cm) silicon substrate is presented. The wideband is achieved by reducing the Q factor and exciting the high-order radiation modes with size optimization. The antenna uses an on-chip top layer metal as the patch and a probe station as the ground plane. The on-chip ground plane is connected to the probe station using the inner connection structure of the probe station for better performance. The simulated S11 is less than -10 dB over 46-95 GHz, which is well matched with the measured results over the available 40-67 GHz frequency range from our measurement equipment. A maximum gain of-5.55 dBi with 4% radiation efficiency at a 60 GHz point is also achieved based on Ansofi HFSS simulation. Compared with the current state-of-the-art devices, the presented antenna achieves a wider bandwidth and could be used in wideband millimeter-wave communication and image applications.
文摘In order to overcome the narrow-bandwidth of the patch antenna, one kind of configuration which can widen the bandwidth significantly is discussed in this letter. Analyzed by the equivalent-circuits method and simulated by HFSS, a rule derived from simulated results that can aid to design the microstrip antennas is found. Finally, the structure parameters are optimized out, Which reaches 44.67% impedance bandwidth. Furthermore, this kind of configuration can also be applied to the multi-laver patch antenna.