AIM: To produce a recombinant protein rMBP-NAP, which was fusionally expressed by Helicobacter pylori(H pylori)neutrophil-activating protein (NAP) and E. coli maltosebinding protein (MBP) and to evaluate its immunorea...AIM: To produce a recombinant protein rMBP-NAP, which was fusionally expressed by Helicobacter pylori(H pylori)neutrophil-activating protein (NAP) and E. coli maltosebinding protein (MBP) and to evaluate its immunoreactivity and immunogenicity.METHODS: Neutrophil-activating protein gene of H pylori (HP-napA) was subcloned from the recombinant plasmid pNEB-napA, and fused to MalE gene of expressing vector pMAL-c2x. The recombinant plasmid pMAL-c2x-napA was confirmed by restriction enzyme digestion, and then transformed into E. coli TB1. Fusion protein rMBP-NAP was induced by IPTG and identified by SDS-PAGE analysis.Soluble rMBP-NAP was purified by amylose affinity chromatography. Immunoreactivity and immunogenicity of the fusion protein were evaluated by animal experiment,Western blotting with human H pylori anti-sera.RESULTS: E.coli TB1 carrying recombinant plasmid pMAL-c2x-napA was constructed and led to a high efficiency cytosol expression of fusion protein rBMP -NAP when induced by IPTG.The molecular weight of rBMP-NAP was about 57 kD,accounting for 37.55% of the total protein in the sonicated supematant of E. coli TB1 (pMAL-c2x-napA). The purity of the fusion protein after one-step affinity chromatography was 94% and the yield was 100 mg per liter of bacterial culture.The purified fusion protein could be specifically recognized by both human anti-sera from clinical patients with H pylori infection and rabbit sera immunized by rMBP-NAP itself.CONCLUSION: Recombinant protein rMBP-NAP might be a novel antigen for vaccine development against H pylori.展开更多
Grass carp reovirus (GCRV) is a tentative member of the Aquareovirus genus in the family Reoviridae. The mature virion comprises 11 dsRNA genomes enclosed by two concentric icosahedral proteins shells that is comprise...Grass carp reovirus (GCRV) is a tentative member of the Aquareovirus genus in the family Reoviridae. The mature virion comprises 11 dsRNA genomes enclosed by two concentric icosahedral proteins shells that is comprised of five core proteins and two outer capsid proteins. The genome sequence and 3D structure demonstrate there is a higher level of sequence homology in structural proteins between GCRV and mammalian orthoreoviruses (MRV) compared to other members of the family. To understand the pathogenesis of GCRV infection, the outer capsid protein VP5, a homology of the μ1 protein of MRV, was expressed in E.coli. It was found that the recombinant VP5 was highly expressed, and the expressed His-tag fusion protein was involved in the formation of the inclusion body. Additionally, specific anti-VP5 serum was prepared from purified protein and western blot demonstrated that the expressed protein was able to bind immunologically to rabbit anti GCRV particle serum and the immunogenicity was determined by ELISA assay. Additional experiments in investigating the functional properties of VP5 will further elucidate the role of the GCRV outer capsid protein VP5 during entry into host cells, and its interaction among viral proteins and host cells during the infection process.展开更多
Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. T...Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.展开更多
AIM: To find a soluble and functional recombinant receptor-binding domain of severe acute respiratory syndrome-associated coronavirus (SARS-Cov), and to analyze its receptor binding ability. METHODS: Three fusion ...AIM: To find a soluble and functional recombinant receptor-binding domain of severe acute respiratory syndrome-associated coronavirus (SARS-Cov), and to analyze its receptor binding ability. METHODS: Three fusion tags (glutathione S-transferase, GST; thioredoxin, Trx; maltose-binding protein, MBP), which preferably contributes to increasing solubility and to facilitating the proper folding of heteroprotein, were used to acquire the soluble and functional expression of RBD protein in Escherichia coli (BL21(DE3) and Rosetta-gamiB (DE3) strains). The receptor binding ability of the purified soluble RBD protein was then detected by ELISA and flow cytometry assay. RESULTS: RBD of SARS-Cov spike protein was expressed as inclusion body when fused as TrxA tag form in both BL21 (DE3) and Rosetta-gamiB (DE3) under many different cultures and induction conditions. And there was no visible expression band on SDS-PAGE when RBD was expressed as MBP tagged form. Only GST tagged RBD was soluble expressed in BL21(DE3), and the protein was purified by AKTA Prime Chromatography system. The ELISA data showed that GST.RBD antigen had positive reaction with anti-RBD mouse monoclonal antibody 1A5. Further flow cytometry assay demonstrated the high efficiency of RBD's binding ability to ACE2 (angiotensin-converting enzyme 2) positive Vero E6 cell. And ACE2 was proved as a cellular receptor that meditated an initial-affinity interaction with SARS-Cov spike protein. The geometrical mean of GST and GST.RBD binding to Vero E6 cells were 77.08 and 352.73 respectively. CONCLUSION: In this paper, we get sufficient soluble N terminal GST tagged RBD protein expressed in EcoliBL21 (DE3); data from ELISA and flow cytometry assay demonstrate that the recombinant protein is functional and binding to ACE2 positive Vero E6 cell efficiently. And the recombinant RBD derived from E.coli can be used to developing subunit vaccine to block S protein binding with receptor and to neutralizing SARS-Cov infection.展开更多
Objective To investigate whether the effect of E. coli on U937 cell fines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation. Methods The U937 cell lines were treated with E. coli at d...Objective To investigate whether the effect of E. coli on U937 cell fines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation. Methods The U937 cell lines were treated with E. coli at different time or together with SB203580, an inhibitor for p38. Cell apoptosis was analyzed by flow cytometry, p38 activities were detected by Western blotting. Results E. coli induced apoptosis in cultured U937 cell lines in a time-dependent manner. The phosphorylation of p38 was induced after 10 minutes infection, reached the peak after 20 minutes, and started to decline after 30 minutes. In contrast, the level of total p38 protein was not changed in whole experimental period. Inhibition of p38 with SB203580 significantly inhibited E. coli induced apoptosis in U937 cells. Conclusion The activation of the p38 MAPK in U937 cell lines by E. coli is a major pathway to mediate the apoptosis.展开更多
Bacterial genomic DNA is highly organized into one or few compacted bodies known as nucleoid, which is composed of DNA, RNA and several DNA-binding proteins. These DNA-binding proteins require essential alterations in...Bacterial genomic DNA is highly organized into one or few compacted bodies known as nucleoid, which is composed of DNA, RNA and several DNA-binding proteins. These DNA-binding proteins require essential alterations in their expression during stationary phase of growth in order to re-spond to stressful environmental conditions. Dps (DNA-binding protein from starved cells) is one of such DNA-binding proteins, which accumulates most when E. coli cells reach to the stationary phase. Here, we have characterized Dps protein under various growth phases. Immunofluorescent microscopic observation reveals that Dps plays a key role in final round of genome compaction during the stationary phase. Similar results are also obtained by Western immunoblot analysis, after quantification of Dps protein from the exponential phase and early stationary phase nucleoid bound fractions, separated by sucrose density gradient centrifugation. Our results support the conclusion that Dps occupies more than half of the stationary phase nucleoid in E. coli.展开更多
Salmonella and E.coli possess different surface protein structures that can induce protective immune responses.Identification of these proteins capacitates development of diverse applications in prevention and diagnos...Salmonella and E.coli possess different surface protein structures that can induce protective immune responses.Identification of these proteins capacitates development of diverse applications in prevention and diagnosis that contribute to effectively control disease-causing enterobacteria pathogens such as Salmonella and E.coli.A simple procedure for obtaining protein complexes of Salmonella serotypes and E.coli is performed in this study.A sonication process with heat treatment of whole bacteria induced the release of protein complexes.Concentration of the protein extract was quantified using protein quantification Kits-Rapid,and protein complex profile was obtained by SDS-PAGE(Sodium dodecyl sulfate polyacrylamide gel electrophoresis)and silver staining.The concentrations of protein ranged from 29.45 to 45.35μg/mL in the Salmonella protein extracts,and from 25.35 to 36.72μg/mL in the E.coli protein extracts.Six major groups of proteins from E.coli(YfiO,NipB,OmpF,YfgL,Talc,YaeT)and four major groups of proteins from Salmonella(Flagellin,OmpA,Porin,SEF21)were preliminarily determined by a simple procedure of extraction based on the molecular weight.展开更多
The pathogenesis-related proteins 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The wheat TdPR1.2 has been previously isolated and characterized. Here we...The pathogenesis-related proteins 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The wheat TdPR1.2 has been previously isolated and characterized. Here we showed by bio-informatic analysis that TdPR1.2 contains six cysteine residues that are conserved between all PR-1 proteins tested. Using ScanProsite tool, we found that TdPR1.2 structure has a CRISP family signature 1 and 2 located at the C-terminal part of the protein. Those two domains are conserved in many identified PR1.2 proteins in plants. Moreover, SignalIP-5.0 analysis revealed that TdPR1.2 contains a putative signal peptide formed by 25 amino acids at the N-terminal extremity. The presence of this signal peptide suggested that the mature proteins will be secreted after the cleavage of the signal sequence. Further, we investigate the role of the TdPR1.2 proteins in the growth of <i>Escherichia coli</i> transformants cells under different abiotic stresses. Our results showed that the full-length form of TdPR1.2 enhanced tolerance of <i>E. coli</i> against salt and osmotic stress but not to KCl. Moreover, TdPR1.2 protein confers bacterial tolerance to heavy metals in solid and liquid mediums. Based on these results, we suggest that the TdPR1.2 protein could play an important role in response to abiotic stress conditions.展开更多
The aim of this study was to investigate the prokaryotic expression of antimicrobial peptide cathelicidin (CATH) PR1 and PR2 from the skin of Paa robertingeri in Escherichia coli. Two active peptides, CATH PR1 and C...The aim of this study was to investigate the prokaryotic expression of antimicrobial peptide cathelicidin (CATH) PR1 and PR2 from the skin of Paa robertingeri in Escherichia coli. Two active peptides, CATH PR1 and CATH PR2, belong to the CATH family in the skin of P. robertingeri. CATH PR1 has a relatively high antimicrobial activity, especially for the drug-resistant strains found in clinical practice; however, no antimicrobial activity has been found in CATH PR2. The molecular weights of both CATH PR1 and CATH PR2 are relatively low (3195.88 and 2838.34 Da, respectively). Thus, the genetic processes, as well as the expression and purification of these proteins, are difficult to perform. Therefore, in this study, CATH PR1 and CATH PR2 genes were tandem ligated and then connected to the plasmid pET-32a. This reconstructed plasmid was then transfected into the expression vector E. coli BL21 to construct the recombinant expression system. The fusion expression of peptide PR was stable in E. coli after induction with 1.0 mol/L isopropyl β-D-1-thiogalactopyranoside at 37℃ for 4 h. The antimicrobial activity assay using Staphylococcus aureus (Song) and Candida albicans 08030102 showed that the antimicrobial activity of PR was similar to the antimicrobial activity of CATH PR1. This study showed that artificial modification of the amino acid sequences of PR1 and PR2 could result in better protein expression in prokaryotes, and the fusion protein expressed had relatively high antimicrobial and other biological activities. In conclusion, the findings suggest future prospects of the commercialization of this method.展开更多
The gene encoding the 18 kDa protein of Taenia solium metacestodes was amplified by RT-PCR and cloned into the pGEM-T vector for sequencing.The recombinant plasmid named pGEX-CE18 was constructed and transformed into ...The gene encoding the 18 kDa protein of Taenia solium metacestodes was amplified by RT-PCR and cloned into the pGEM-T vector for sequencing.The recombinant plasmid named pGEX-CE18 was constructed and transformed into E.coli BL21 for in vitro expression.SDS-PAGE and Western blot were employed for analyzing the recombinant protein,which was then used for development of an indirect ELISA for detection of anti-cysticercosis antibodies.The results showed that the recombinant protein of interest was 35 kDa in size,accounting for 28%of total bacteria proteins,and reacted with positive sera against cysticercosis.Using the newly-constructed indirect ELISA and a commercially available ELISA kit,paired analyses of 178 serum samples indicated that the concordant rate was 98.83%and the ELISA exhibited good specificity and sensitivity,supporting its utility and application for diagnosis of cysticercosis.展开更多
基金Supported by the Medical Science Foundation for Distinguished Scholars of Henan Province, No. 200084
文摘AIM: To produce a recombinant protein rMBP-NAP, which was fusionally expressed by Helicobacter pylori(H pylori)neutrophil-activating protein (NAP) and E. coli maltosebinding protein (MBP) and to evaluate its immunoreactivity and immunogenicity.METHODS: Neutrophil-activating protein gene of H pylori (HP-napA) was subcloned from the recombinant plasmid pNEB-napA, and fused to MalE gene of expressing vector pMAL-c2x. The recombinant plasmid pMAL-c2x-napA was confirmed by restriction enzyme digestion, and then transformed into E. coli TB1. Fusion protein rMBP-NAP was induced by IPTG and identified by SDS-PAGE analysis.Soluble rMBP-NAP was purified by amylose affinity chromatography. Immunoreactivity and immunogenicity of the fusion protein were evaluated by animal experiment,Western blotting with human H pylori anti-sera.RESULTS: E.coli TB1 carrying recombinant plasmid pMAL-c2x-napA was constructed and led to a high efficiency cytosol expression of fusion protein rBMP -NAP when induced by IPTG.The molecular weight of rBMP-NAP was about 57 kD,accounting for 37.55% of the total protein in the sonicated supematant of E. coli TB1 (pMAL-c2x-napA). The purity of the fusion protein after one-step affinity chromatography was 94% and the yield was 100 mg per liter of bacterial culture.The purified fusion protein could be specifically recognized by both human anti-sera from clinical patients with H pylori infection and rabbit sera immunized by rMBP-NAP itself.CONCLUSION: Recombinant protein rMBP-NAP might be a novel antigen for vaccine development against H pylori.
基金National Basic Research Program ofChina (973 Program) (2009CB118701)National NaturalScientific Foundation of China (30671615, 30871940)+1 种基金Innovation Project of the Chinese Academy of Sciences(KSCX2-YW-N-021)Science and Technology Foundation of Zhejiang Province (2007C22052)
文摘Grass carp reovirus (GCRV) is a tentative member of the Aquareovirus genus in the family Reoviridae. The mature virion comprises 11 dsRNA genomes enclosed by two concentric icosahedral proteins shells that is comprised of five core proteins and two outer capsid proteins. The genome sequence and 3D structure demonstrate there is a higher level of sequence homology in structural proteins between GCRV and mammalian orthoreoviruses (MRV) compared to other members of the family. To understand the pathogenesis of GCRV infection, the outer capsid protein VP5, a homology of the μ1 protein of MRV, was expressed in E.coli. It was found that the recombinant VP5 was highly expressed, and the expressed His-tag fusion protein was involved in the formation of the inclusion body. Additionally, specific anti-VP5 serum was prepared from purified protein and western blot demonstrated that the expressed protein was able to bind immunologically to rabbit anti GCRV particle serum and the immunogenicity was determined by ELISA assay. Additional experiments in investigating the functional properties of VP5 will further elucidate the role of the GCRV outer capsid protein VP5 during entry into host cells, and its interaction among viral proteins and host cells during the infection process.
基金This work was supported by a grant fromthe International Atomic Energy Agency (IAEA) (grantNo: 12510/R1) a grant from the Chinese NationalNatural Science Foundation (grant No: 30400120)
文摘Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.
文摘AIM: To find a soluble and functional recombinant receptor-binding domain of severe acute respiratory syndrome-associated coronavirus (SARS-Cov), and to analyze its receptor binding ability. METHODS: Three fusion tags (glutathione S-transferase, GST; thioredoxin, Trx; maltose-binding protein, MBP), which preferably contributes to increasing solubility and to facilitating the proper folding of heteroprotein, were used to acquire the soluble and functional expression of RBD protein in Escherichia coli (BL21(DE3) and Rosetta-gamiB (DE3) strains). The receptor binding ability of the purified soluble RBD protein was then detected by ELISA and flow cytometry assay. RESULTS: RBD of SARS-Cov spike protein was expressed as inclusion body when fused as TrxA tag form in both BL21 (DE3) and Rosetta-gamiB (DE3) under many different cultures and induction conditions. And there was no visible expression band on SDS-PAGE when RBD was expressed as MBP tagged form. Only GST tagged RBD was soluble expressed in BL21(DE3), and the protein was purified by AKTA Prime Chromatography system. The ELISA data showed that GST.RBD antigen had positive reaction with anti-RBD mouse monoclonal antibody 1A5. Further flow cytometry assay demonstrated the high efficiency of RBD's binding ability to ACE2 (angiotensin-converting enzyme 2) positive Vero E6 cell. And ACE2 was proved as a cellular receptor that meditated an initial-affinity interaction with SARS-Cov spike protein. The geometrical mean of GST and GST.RBD binding to Vero E6 cells were 77.08 and 352.73 respectively. CONCLUSION: In this paper, we get sufficient soluble N terminal GST tagged RBD protein expressed in EcoliBL21 (DE3); data from ELISA and flow cytometry assay demonstrate that the recombinant protein is functional and binding to ACE2 positive Vero E6 cell efficiently. And the recombinant RBD derived from E.coli can be used to developing subunit vaccine to block S protein binding with receptor and to neutralizing SARS-Cov infection.
文摘Objective To investigate whether the effect of E. coli on U937 cell fines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation. Methods The U937 cell lines were treated with E. coli at different time or together with SB203580, an inhibitor for p38. Cell apoptosis was analyzed by flow cytometry, p38 activities were detected by Western blotting. Results E. coli induced apoptosis in cultured U937 cell lines in a time-dependent manner. The phosphorylation of p38 was induced after 10 minutes infection, reached the peak after 20 minutes, and started to decline after 30 minutes. In contrast, the level of total p38 protein was not changed in whole experimental period. Inhibition of p38 with SB203580 significantly inhibited E. coli induced apoptosis in U937 cells. Conclusion The activation of the p38 MAPK in U937 cell lines by E. coli is a major pathway to mediate the apoptosis.
文摘Bacterial genomic DNA is highly organized into one or few compacted bodies known as nucleoid, which is composed of DNA, RNA and several DNA-binding proteins. These DNA-binding proteins require essential alterations in their expression during stationary phase of growth in order to re-spond to stressful environmental conditions. Dps (DNA-binding protein from starved cells) is one of such DNA-binding proteins, which accumulates most when E. coli cells reach to the stationary phase. Here, we have characterized Dps protein under various growth phases. Immunofluorescent microscopic observation reveals that Dps plays a key role in final round of genome compaction during the stationary phase. Similar results are also obtained by Western immunoblot analysis, after quantification of Dps protein from the exponential phase and early stationary phase nucleoid bound fractions, separated by sucrose density gradient centrifugation. Our results support the conclusion that Dps occupies more than half of the stationary phase nucleoid in E. coli.
文摘Salmonella and E.coli possess different surface protein structures that can induce protective immune responses.Identification of these proteins capacitates development of diverse applications in prevention and diagnosis that contribute to effectively control disease-causing enterobacteria pathogens such as Salmonella and E.coli.A simple procedure for obtaining protein complexes of Salmonella serotypes and E.coli is performed in this study.A sonication process with heat treatment of whole bacteria induced the release of protein complexes.Concentration of the protein extract was quantified using protein quantification Kits-Rapid,and protein complex profile was obtained by SDS-PAGE(Sodium dodecyl sulfate polyacrylamide gel electrophoresis)and silver staining.The concentrations of protein ranged from 29.45 to 45.35μg/mL in the Salmonella protein extracts,and from 25.35 to 36.72μg/mL in the E.coli protein extracts.Six major groups of proteins from E.coli(YfiO,NipB,OmpF,YfgL,Talc,YaeT)and four major groups of proteins from Salmonella(Flagellin,OmpA,Porin,SEF21)were preliminarily determined by a simple procedure of extraction based on the molecular weight.
文摘The pathogenesis-related proteins 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The wheat TdPR1.2 has been previously isolated and characterized. Here we showed by bio-informatic analysis that TdPR1.2 contains six cysteine residues that are conserved between all PR-1 proteins tested. Using ScanProsite tool, we found that TdPR1.2 structure has a CRISP family signature 1 and 2 located at the C-terminal part of the protein. Those two domains are conserved in many identified PR1.2 proteins in plants. Moreover, SignalIP-5.0 analysis revealed that TdPR1.2 contains a putative signal peptide formed by 25 amino acids at the N-terminal extremity. The presence of this signal peptide suggested that the mature proteins will be secreted after the cleavage of the signal sequence. Further, we investigate the role of the TdPR1.2 proteins in the growth of <i>Escherichia coli</i> transformants cells under different abiotic stresses. Our results showed that the full-length form of TdPR1.2 enhanced tolerance of <i>E. coli</i> against salt and osmotic stress but not to KCl. Moreover, TdPR1.2 protein confers bacterial tolerance to heavy metals in solid and liquid mediums. Based on these results, we suggest that the TdPR1.2 protein could play an important role in response to abiotic stress conditions.
基金supported by the Industry-University-Research Project of Application of the Active Substances from Amphibian Skin from the Education Ministry of Guizhou (Q. J. HE and K. Y. ZHI [2013]121)
文摘The aim of this study was to investigate the prokaryotic expression of antimicrobial peptide cathelicidin (CATH) PR1 and PR2 from the skin of Paa robertingeri in Escherichia coli. Two active peptides, CATH PR1 and CATH PR2, belong to the CATH family in the skin of P. robertingeri. CATH PR1 has a relatively high antimicrobial activity, especially for the drug-resistant strains found in clinical practice; however, no antimicrobial activity has been found in CATH PR2. The molecular weights of both CATH PR1 and CATH PR2 are relatively low (3195.88 and 2838.34 Da, respectively). Thus, the genetic processes, as well as the expression and purification of these proteins, are difficult to perform. Therefore, in this study, CATH PR1 and CATH PR2 genes were tandem ligated and then connected to the plasmid pET-32a. This reconstructed plasmid was then transfected into the expression vector E. coli BL21 to construct the recombinant expression system. The fusion expression of peptide PR was stable in E. coli after induction with 1.0 mol/L isopropyl β-D-1-thiogalactopyranoside at 37℃ for 4 h. The antimicrobial activity assay using Staphylococcus aureus (Song) and Candida albicans 08030102 showed that the antimicrobial activity of PR was similar to the antimicrobial activity of CATH PR1. This study showed that artificial modification of the amino acid sequences of PR1 and PR2 could result in better protein expression in prokaryotes, and the fusion protein expressed had relatively high antimicrobial and other biological activities. In conclusion, the findings suggest future prospects of the commercialization of this method.
基金supported by National High-tech Research and Development Plan(863 Project)(2006AA10A207)
文摘The gene encoding the 18 kDa protein of Taenia solium metacestodes was amplified by RT-PCR and cloned into the pGEM-T vector for sequencing.The recombinant plasmid named pGEX-CE18 was constructed and transformed into E.coli BL21 for in vitro expression.SDS-PAGE and Western blot were employed for analyzing the recombinant protein,which was then used for development of an indirect ELISA for detection of anti-cysticercosis antibodies.The results showed that the recombinant protein of interest was 35 kDa in size,accounting for 28%of total bacteria proteins,and reacted with positive sera against cysticercosis.Using the newly-constructed indirect ELISA and a commercially available ELISA kit,paired analyses of 178 serum samples indicated that the concordant rate was 98.83%and the ELISA exhibited good specificity and sensitivity,supporting its utility and application for diagnosis of cysticercosis.