In the summers of 2003 and 2007, eastern China suffered similar climate disasters with severe flooding in the Huaihe River valley and heat waves in the southern Yangtze River delta and South China. Using SST data and ...In the summers of 2003 and 2007, eastern China suffered similar climate disasters with severe flooding in the Huaihe River valley and heat waves in the southern Yangtze River delta and South China. Using SST data and outgoing longwave radiation (OLR) data from NOAA along with reanalysis data from NCEP/NCAR, the 2002/03 and 2006/07 E1 Nifio episodes in the central Pacific and their delayed impacts on the following early summertime climate anomalies of eastern China were analyzed. The possible physical progresses behaved as follows: Both of the moderate E1 Ninio episodes matured in the central equatorial Pacific during the early winter. The zonal wind anomalies near the sea surface of the west-central equatorial Pacific excited equatorial Kelvin waves propagating eastward and affected the evolution of the E1 Nifio episodes. From spring to early summer, the concurring anomalous easterly winds in the central equatorial Pacific and the end of upwelling Kelvin waves propagating eastward in the western equatorial Pacific, favored the equatorial warm water both of the SST and the subsurface temperature in the western Pacific. These conditions favored the warm state of the western equatorial Pacific in the early summer for both cases of 2003 and 2007. Due to the active convection in the western equatorial Pacific in the early summer and the weak warm SST anomalies in the tropical western Pacific from spring to early summer, the convective activities in the western Pacific warm pool showed the pattern in which the anomalous strong convection only appeared over the southern regions of the tropical western Pacific warm pool, which effects the meridional shift of the western Pacific subtropical high in the summer. The physical progress of the delayed impacts of the E1 Nino episodes in the central equatorial Pacific and their decaying evolution on the climate anomalies in eastern China were interpreted through the key role of special pattern for the heat convection in the tropical western Pacific warm pool and the response of the western North Pacific anomalous anticyclone.展开更多
In this paper, the influence of E1 Nino event on the Madden-Julian Oscillation (MJO) over the equatorial Pacific is stud- ied by using reanalysis data and relevant numerical simulation results. It is clearly shown t...In this paper, the influence of E1 Nino event on the Madden-Julian Oscillation (MJO) over the equatorial Pacific is stud- ied by using reanalysis data and relevant numerical simulation results. It is clearly shown that E1 Nino can reduce the intensity of MJO. The kinetic energy of MJO over the equatorial Pacific is stronger before the occurrence of the E1 Nino event, but it is reduced rapidly after E1 v event outbreak, and the weakened MJO even can continue to the next summer. The convection over the cen- tral-western Pacific is weakened in E1 Nino winter. The positive anomalous OLR over the central-western Pacific has opposite variation in E1 Nino winter comparing to the non-ENSO cases. The vertical structure of MJO also affected by E1 Nino event, so the opposite direction features of the geopotential height and the zonal wind in upper and lower level troposphere for the MJO are not remarkable in the E1 Nino winter and tend to be barotropic features. El Nino event also has an influence on the eastward propa- gation of the MJO too. During E1 Nino winter, the eastward propagation of the MJO is not so regular and unanimous and there exists some eastward propagation, which is faster than that in non-ENSO case. Dynamic analyses suggest that positive SSTA (El Nino case) affects the atmospheric thickness over the equatorial Pacific and then the excited atmospheric wave-CISK mode is weakened, so that the intensity of MJO is reduced; the combining of the barotropic unstable mode in the atmosphere excited by external forcing (SSTA) and the original MJO may be an important reason for the MJO vertical structure tending to be barotropic during the E1 Nino.展开更多
The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (C...The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em- ployed to study the largest initial error growth in the E1 Nino predictions of an intermediate coupled model (ICM). The optimal initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of E1 Nino, the E1 Nino event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly, weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.展开更多
The NCEP-NCAR reanalysis dataset and the HadlSST dataset (1959-2014) are used to analyze the impact of two types of E1 Nino events, i.e., eastern Pacific E1 Nino (EP-E1 Nino) and central Pacific E1 Nino (CP-E1 N...The NCEP-NCAR reanalysis dataset and the HadlSST dataset (1959-2014) are used to analyze the impact of two types of E1 Nino events, i.e., eastern Pacific E1 Nino (EP-E1 Nino) and central Pacific E1 Nino (CP-E1 Nino) events, on the duration of major and minor sudden stratospheric warmings (SSWs) in Northern Hemisphere winter (November to February). Al- though the frequency of major and minor SSWs during different types of E1 Nino shows no distinct differences, the duration of both major and minor SSWs during CP-E1 Nino is shorter than that during EP-E1 Nino. The spatial distribution of geopo- tential height anomalies preceding major SSWs resembles the western Pacific (WP) teleconnection pattern, while the spatial distribution of geopotential height anomalies preceding minor SSWs bears similarity to the Pacific-North America (PNA) teleconnection pattern. An enhancement of the strength of both wavenumber 1 and wavenumber 2 is found before major SSWs. Before minor SSWs, wavenumber 1 is also strengthened, but wavenumber 2 is weakened. The analysis also reveals that EP-E1 Nino tends to induce positive phases of PNA and WP teleconnections, while CP-E1 Nino induces negative-phase WP teleconnection. As the positive phases of the PNA and WP teleconnections are related to the strengthening of wavenum- bet 1, EP-E1 Nino causes an enhancement of wavenumber 1 in the high-latitude upper troposphere and an enhancement of the upward wave flux in the high-latitude stratosphere, accompanied by a negative anomaly in Eliassen-Palm flux divergence in the subpolar stratosphere, which accounts for the longer SSW duration during EP-E1 Nino than during CP-E1 Nino.展开更多
A class of coupled system to oscillate of the E1 Nino/La Nino-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions and asymptotic behavior of the solution for an EN...A class of coupled system to oscillate of the E1 Nino/La Nino-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions and asymptotic behavior of the solution for an ENSO model are obtained.展开更多
To reconstruct the productivity changes for the last 10 500 a in the northeastern East China Sea (ECS), biogenic compounds (such as carbonate, organic carbon and opal), marine micropaleontological fossils (plankt...To reconstruct the productivity changes for the last 10 500 a in the northeastern East China Sea (ECS), biogenic compounds (such as carbonate, organic carbon and opal), marine micropaleontological fossils (planktonic foraminifera, benthic foraminifera, radiolarian and silicoflagellate) and the compositional characters of benthic foraminifera fauna analyses were carried out on a sediment core DOC082 obtained from the western slope of Okinawa Trough (29°13.93′N, 128°08.53′E; 1 128 m water depth). The long-term changes of biogenic and micropaleontological proxies display some similarities through the last 10 500 a, which show three different phases: lower values are recorded during the early and middle ttolocene (before about 4 000 a BP), followed by an abrupt and remarkable increase at about 4 000 a BP, the late Holocene (after about 3 000 a BP) is characterized by continuously high values. The multi-proxy data of paleoproductivity and percents of benthic foraminifera genera (Uvigerina and Bulimina) show that during the early and middle Holocene (10 500-4 000 a BP) productivity was relatively low with a sudden and distinct increase at about 4 000 a BP, and the late Holocene (3 400-0 a BP) is marked by significantly higher productivity. Also, the radiolarian-based sea surface temperature (SST) records reveal a distinct decline in SST in the late Holocene after 3 200 a BP, very different from the early and middle Holocene. For the last 3 000 a, the enhanced biological productivity and distinctly lower SST indicate a major change of oceanographic conditions in the northeastern ECS. These marine environmental anomalies are consistent with other paleoclimatic records for the late Holocene in the Chinese continent and its surrounding regions. After analyzing the mechanisms of modern productivity and SST changes in the northeastern ECS, and based on the climatic anomalies in the Chinese continent and variations in the Kuroshio Current during modern El Nino periods, we suggest that the anomalous environmental conditions in the northeastern ECS may imply intensified El Nino activity during the late Holocene.展开更多
E1 Nino events with an eastern Pacific pattern (EP) and central Pacific pattern (CP) were first separated using rotated empirical orthogonal functions (REOF). Lead/lag regression and rotated singular value decom...E1 Nino events with an eastern Pacific pattern (EP) and central Pacific pattern (CP) were first separated using rotated empirical orthogonal functions (REOF). Lead/lag regression and rotated singular value decomposition (RSVD) analyses were then carried out to study the relation between the surface zonal wind (SZW) anomalies and sea surface temperature (SST) anomalies in the tropical Pacific. A possible physical process for the CP E1 Nifio was proposed. For the EP E1 Nino, strong westerly anomalies that spread eastward continuously produce an anomalous ocean zonal convergence zone (ZCZ) centered on about 165°W. This SZW anomaly pattern favors poleward and eastward Sverdrup transport at the equator. For the CP E1Nino, westerly anomalies and the ZCZ are mainly confined to the western Pacific, and easterly anomalies blow in the eastern Pacific. This SZW anomaly pattern restrains poleward and eastward Sverdrup transport at the equator; however, there is an eastward Sverdrup transport at about 5°N, which favors the wanning of the north-eastern tropical Pacific. It is found that the slowness of eastward propagation of subsurface warm water (partly from the downwelling caused by Ekman convergence and the ZCZ) is due to the slowdown of the undercurrent in the central basin, and vertical advection in the central Pacific may be important in the formation and disappearance of the CP E1 Nifio.展开更多
The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cyc...The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Nino event occurred in the equatorial Pacific.Suspended particulate matter(SPM)data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Nino event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Nino events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Nino event on the global carbon cycle and has profound implications for understanding El Nino events.展开更多
Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the ...Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.展开更多
On the basis of large amount of historical and measured data, this paper analyzed the regional, periodic, frequency, continuing, and response characteristics of droughts and floods in Zhejiang and proposed the concept...On the basis of large amount of historical and measured data, this paper analyzed the regional, periodic, frequency, continuing, and response characteristics of droughts and floods in Zhejiang and proposed the conception of ratio of peak runoff. Main characteristics of droughts and floods in Zhejiang are as follows: 1) The western Zhejiang region is plum rain major control area, and the eastern coastal region of Zhejiang is typhoon major control area. 2) Within a long period in the future, Zhejiang will be in the long period that features droughts. 3) In Zhejiang the 17th century was frequent drought and flood period, the 16th, 19th, and 20th centuries were normal periods, while the 18th century was spasmodic drought and flood period. 4) The severe and medium floods in Zhejiang were all centered around the M-or m-year of the 11-year sunspot activity period. 5) There are biggish years of annual runoff occurred in E1 Nifio year (E) or the following year (E+1) in Zhejiang. The near future evolution trend of droughts and floods in Zhejiang is as follows: 1) Within a relatively long period in the future, Zhejiang Province will be in the long period of mostly drought years. 2) Between 1999 and 2009 this area will feature drought years mainly, while the period of 2010-2020 will feature flood years mostly. 3) Zhejiang has a good response to the sunspot activities, and the years around 2009, 2015, and 2020 must be given due attention, especially around 2020 there might be an extremely severe flood year in Zhejiang. 4) Floods in Zhejiang have good response to El Nifio events, in El Nifio year or the following year much attention must be paid to. And 5) In the future, the first, second, and third severe typhoon years in Zhejiang will be 2009. 2012. and 2015. resnectivelv.展开更多
A class of coupled system of the E1 Nino/La Nina-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic...A class of coupled system of the E1 Nino/La Nina-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behavior of solution for corresponding problem is considered.展开更多
The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of ...The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.展开更多
This study investigates the influences of tropical Indian Ocean(TIO) warming on tropical cyclone(TC)genesis in different regions of the western North Pacific(WNP) from July to October(JASO) during the decaying El Nio....This study investigates the influences of tropical Indian Ocean(TIO) warming on tropical cyclone(TC)genesis in different regions of the western North Pacific(WNP) from July to October(JASO) during the decaying El Nio. The results show significant negative TC frequency anomalies localized in the southeastern WNP. Correlation analysis indicates that a warm sea surface temperature anomaly(SSTA) in the TIO strongly suppresses TC genesis south of 21°N and east of 140°E in JASO. Reduced TC genesis over the southeastern WNP results from a weak monsoon trough and divergence and subsidence anomalies associated with an equatorial baroclinic Kelvin wave. Moreover,suppressed convection in response to a cold local SSTA, induced by the increased northeasterly connected by the wind-evaporation-SST positive feedback mechanism, is found unfavorable for TC genesis. Positive TC genesis anomalies are observed over higher latitudinal regions(at around 21°N, 140°E) and the western WNP because of enhanced convection along the northern flank of the WNP anomalous anticyclone and low-level convergence,respectively. Although local modulation(e.g., local SST) could have greater dominance over TC activity at higher latitudes in certain anomalous years(e.g., 1988), a warm TIO SSTA can still suppress TC genesis in lower latitudinal regions of the WNP. A better understanding of the contributions of TIO warming could help improve seasonal TC predictions over different regions of the WNP in years of decaying El Nio.展开更多
By analyzing the variability of global SST (sea surface temperature) anomalies, we propose a unified Nifio index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7...By analyzing the variability of global SST (sea surface temperature) anomalies, we propose a unified Nifio index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7~C contour line of the standard deviation of the SST anomalies and try to unify the traditional Nifio regions into a single entity. The unified Nifio region covers almost all of the traditional Nifio regions. The anomaly time series of the averaged SST over this region are closely correlated to historical Nifio indices. The anomaly time series of the zonal and meridional thermal centroid have close correlation with historical TNI (Trans-Nifio index) indices, showing differences among E1 Nifio (La Nifia) events. The meridional centroid anomaly suggests that areas of maximum temperature anomaly are moving meridionally (although slightly) with synchronous zonal movement. The zonal centroid anomalies of the unified Nifio region are found helpful in the classification of the Eastern Pacific (EP)/Central Pacific (CP) types of E1 Nifio events. More importantly, the zonal centroid anomaly shows that warm areas might move during a single warming/cooling phase. All the current Nifio indices can be well represented by a simple linear combination of unified Nifio indices, which suggests that the thermal anomaly (SSTA) and thermal centroid location anomaly of the unified Nifio region would yield a more complete image of each E1 Nifio/ La Nina event.展开更多
Based on the study of the cold phase of the Pacific Decade Oscillation, pandemic influenza is related to climate. The relation of low temperature, Pacific Decade Oscillation, strongest earthquake, Influenza, hurricane...Based on the study of the cold phase of the Pacific Decade Oscillation, pandemic influenza is related to climate. The relation of low temperature, Pacific Decade Oscillation, strongest earthquake, Influenza, hurricane and E1 Nino is researched in this study. In the cold period of Pacific Decade Oscillation, the strongest earthquake, hurricane with La Ni'na, Pandemic Influenza with E1 Nino will occur stronger and stronger. From 1950 to 1976, the strongest dust-storm is connected with Pandemic Influenza one by one. So, dust-storm is one of factors to spread pandemic influenza viruses.展开更多
The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) ...The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) at the surface in the western North Pacific Ocean. Calculations show that on annual average the bifurcation occurs at about 13.4°N at the surface. The geostrophic flow derived from Sea Surface Height (SSH) data shows that the southernmost latitude of the NEC bifurcation at the surface is about 12.9°N in June and the northernmost latitude is about 14.1°N in December. Correlation analyses between the bifurcation latitude and the Southern Oscillation Index (SOl) suggest that the bifurcation latitude is highly correlated with the E1 Nino/Southern Oscillation (ENSO) events. During the E1 Nino years the bifurcation of the NEC takes place at higher latitudes and vice versa.展开更多
基金supported by the National Natural Science Foundation of China (No. 40705022)the "National Key Programme for Developing Basic Science" Project 2004CB418303the Frontier Project of the Knowledge Innovation Engineering of the Chinese Academy of Sciences(IAP07217)
文摘In the summers of 2003 and 2007, eastern China suffered similar climate disasters with severe flooding in the Huaihe River valley and heat waves in the southern Yangtze River delta and South China. Using SST data and outgoing longwave radiation (OLR) data from NOAA along with reanalysis data from NCEP/NCAR, the 2002/03 and 2006/07 E1 Nifio episodes in the central Pacific and their delayed impacts on the following early summertime climate anomalies of eastern China were analyzed. The possible physical progresses behaved as follows: Both of the moderate E1 Ninio episodes matured in the central equatorial Pacific during the early winter. The zonal wind anomalies near the sea surface of the west-central equatorial Pacific excited equatorial Kelvin waves propagating eastward and affected the evolution of the E1 Nifio episodes. From spring to early summer, the concurring anomalous easterly winds in the central equatorial Pacific and the end of upwelling Kelvin waves propagating eastward in the western equatorial Pacific, favored the equatorial warm water both of the SST and the subsurface temperature in the western Pacific. These conditions favored the warm state of the western equatorial Pacific in the early summer for both cases of 2003 and 2007. Due to the active convection in the western equatorial Pacific in the early summer and the weak warm SST anomalies in the tropical western Pacific from spring to early summer, the convective activities in the western Pacific warm pool showed the pattern in which the anomalous strong convection only appeared over the southern regions of the tropical western Pacific warm pool, which effects the meridional shift of the western Pacific subtropical high in the summer. The physical progress of the delayed impacts of the E1 Nino episodes in the central equatorial Pacific and their decaying evolution on the climate anomalies in eastern China were interpreted through the key role of special pattern for the heat convection in the tropical western Pacific warm pool and the response of the western North Pacific anomalous anticyclone.
基金supported by the National ‘973’ Programme (No. 2013CB956203)the National Natural Science Foundation of China (No. 41275086)
文摘In this paper, the influence of E1 Nino event on the Madden-Julian Oscillation (MJO) over the equatorial Pacific is stud- ied by using reanalysis data and relevant numerical simulation results. It is clearly shown that E1 Nino can reduce the intensity of MJO. The kinetic energy of MJO over the equatorial Pacific is stronger before the occurrence of the E1 Nino event, but it is reduced rapidly after E1 v event outbreak, and the weakened MJO even can continue to the next summer. The convection over the cen- tral-western Pacific is weakened in E1 Nino winter. The positive anomalous OLR over the central-western Pacific has opposite variation in E1 Nino winter comparing to the non-ENSO cases. The vertical structure of MJO also affected by E1 Nino event, so the opposite direction features of the geopotential height and the zonal wind in upper and lower level troposphere for the MJO are not remarkable in the E1 Nino winter and tend to be barotropic features. El Nino event also has an influence on the eastward propa- gation of the MJO too. During E1 Nino winter, the eastward propagation of the MJO is not so regular and unanimous and there exists some eastward propagation, which is faster than that in non-ENSO case. Dynamic analyses suggest that positive SSTA (El Nino case) affects the atmospheric thickness over the equatorial Pacific and then the excited atmospheric wave-CISK mode is weakened, so that the intensity of MJO is reduced; the combining of the barotropic unstable mode in the atmosphere excited by external forcing (SSTA) and the original MJO may be an important reason for the MJO vertical structure tending to be barotropic during the E1 Nino.
基金supported by the National Natural Science Foundation of China (NFSC Grant Nos. 41690122, 41690120, 41490644, 41490640 and 41475101)+5 种基金the Ao Shan Talents Program supported by Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASTP)a Chinese Academy of Sciences Strategic Priority Projectthe Western Pacific Ocean System (Grant Nos. XDA11010105, XDA11020306)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the National Natural Science Foundation of China Innovative Group Grant (Grant No. 41421005)the Taishan Scholarship and Qingdao Innovative Program (Grant No. 2014GJJS0101)
文摘The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em- ployed to study the largest initial error growth in the E1 Nino predictions of an intermediate coupled model (ICM). The optimal initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of E1 Nino, the E1 Nino event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly, weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41225018 and 41575038)
文摘The NCEP-NCAR reanalysis dataset and the HadlSST dataset (1959-2014) are used to analyze the impact of two types of E1 Nino events, i.e., eastern Pacific E1 Nino (EP-E1 Nino) and central Pacific E1 Nino (CP-E1 Nino) events, on the duration of major and minor sudden stratospheric warmings (SSWs) in Northern Hemisphere winter (November to February). Al- though the frequency of major and minor SSWs during different types of E1 Nino shows no distinct differences, the duration of both major and minor SSWs during CP-E1 Nino is shorter than that during EP-E1 Nino. The spatial distribution of geopo- tential height anomalies preceding major SSWs resembles the western Pacific (WP) teleconnection pattern, while the spatial distribution of geopotential height anomalies preceding minor SSWs bears similarity to the Pacific-North America (PNA) teleconnection pattern. An enhancement of the strength of both wavenumber 1 and wavenumber 2 is found before major SSWs. Before minor SSWs, wavenumber 1 is also strengthened, but wavenumber 2 is weakened. The analysis also reveals that EP-E1 Nino tends to induce positive phases of PNA and WP teleconnections, while CP-E1 Nino induces negative-phase WP teleconnection. As the positive phases of the PNA and WP teleconnections are related to the strengthening of wavenum- bet 1, EP-E1 Nino causes an enhancement of wavenumber 1 in the high-latitude upper troposphere and an enhancement of the upward wave flux in the high-latitude stratosphere, accompanied by a negative anomaly in Eliassen-Palm flux divergence in the subpolar stratosphere, which accounts for the longer SSW duration during EP-E1 Nino than during CP-E1 Nino.
文摘A class of coupled system to oscillate of the E1 Nino/La Nino-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions and asymptotic behavior of the solution for an ENSO model are obtained.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Project No. KZCX2-YW-221)the State Key Basic Research and Development Plan of China (Project No2007CB815903)the National Natural Science Foundation of China (Project No. 40506015)
文摘To reconstruct the productivity changes for the last 10 500 a in the northeastern East China Sea (ECS), biogenic compounds (such as carbonate, organic carbon and opal), marine micropaleontological fossils (planktonic foraminifera, benthic foraminifera, radiolarian and silicoflagellate) and the compositional characters of benthic foraminifera fauna analyses were carried out on a sediment core DOC082 obtained from the western slope of Okinawa Trough (29°13.93′N, 128°08.53′E; 1 128 m water depth). The long-term changes of biogenic and micropaleontological proxies display some similarities through the last 10 500 a, which show three different phases: lower values are recorded during the early and middle ttolocene (before about 4 000 a BP), followed by an abrupt and remarkable increase at about 4 000 a BP, the late Holocene (after about 3 000 a BP) is characterized by continuously high values. The multi-proxy data of paleoproductivity and percents of benthic foraminifera genera (Uvigerina and Bulimina) show that during the early and middle Holocene (10 500-4 000 a BP) productivity was relatively low with a sudden and distinct increase at about 4 000 a BP, and the late Holocene (3 400-0 a BP) is marked by significantly higher productivity. Also, the radiolarian-based sea surface temperature (SST) records reveal a distinct decline in SST in the late Holocene after 3 200 a BP, very different from the early and middle Holocene. For the last 3 000 a, the enhanced biological productivity and distinctly lower SST indicate a major change of oceanographic conditions in the northeastern ECS. These marine environmental anomalies are consistent with other paleoclimatic records for the late Holocene in the Chinese continent and its surrounding regions. After analyzing the mechanisms of modern productivity and SST changes in the northeastern ECS, and based on the climatic anomalies in the Chinese continent and variations in the Kuroshio Current during modern El Nino periods, we suggest that the anomalous environmental conditions in the northeastern ECS may imply intensified El Nino activity during the late Holocene.
基金Supported by the National Natural Science Foundation of China(Nos.41076010,41206017)the National Basic Research Program of China(973 Program)(No.2012CB417402)
文摘E1 Nino events with an eastern Pacific pattern (EP) and central Pacific pattern (CP) were first separated using rotated empirical orthogonal functions (REOF). Lead/lag regression and rotated singular value decomposition (RSVD) analyses were then carried out to study the relation between the surface zonal wind (SZW) anomalies and sea surface temperature (SST) anomalies in the tropical Pacific. A possible physical process for the CP E1 Nifio was proposed. For the EP E1 Nino, strong westerly anomalies that spread eastward continuously produce an anomalous ocean zonal convergence zone (ZCZ) centered on about 165°W. This SZW anomaly pattern favors poleward and eastward Sverdrup transport at the equator. For the CP E1Nino, westerly anomalies and the ZCZ are mainly confined to the western Pacific, and easterly anomalies blow in the eastern Pacific. This SZW anomaly pattern restrains poleward and eastward Sverdrup transport at the equator; however, there is an eastward Sverdrup transport at about 5°N, which favors the wanning of the north-eastern tropical Pacific. It is found that the slowness of eastward propagation of subsurface warm water (partly from the downwelling caused by Ekman convergence and the ZCZ) is due to the slowdown of the undercurrent in the central basin, and vertical advection in the central Pacific may be important in the formation and disappearance of the CP E1 Nifio.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB42010203,XDA19060401,XDA23050503)the Science&Technology Basic Resources Investigation Program of China(No.2017FY100802)+1 种基金the Open Fund for Key Laboratory of Mar.Geol.and Environment,Institute of Oceanology,Chinese Academy of Sciences(No.MGE2019KG03)the Qingdao(Laoshan)Postdoctoral Applied Research Proj ect in 2019(No.Y9KY161)。
文摘The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Nino event occurred in the equatorial Pacific.Suspended particulate matter(SPM)data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Nino event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Nino events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Nino event on the global carbon cycle and has profound implications for understanding El Nino events.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110201)the Development and Validation of High Resolution Climate System Model of the National Basic Research Program of China(Grant No.2010CB951901)
文摘Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.
基金Under the auspices of Zhejiang Provincial ScienceTechnology Foundation of China(No.2006C23066)
文摘On the basis of large amount of historical and measured data, this paper analyzed the regional, periodic, frequency, continuing, and response characteristics of droughts and floods in Zhejiang and proposed the conception of ratio of peak runoff. Main characteristics of droughts and floods in Zhejiang are as follows: 1) The western Zhejiang region is plum rain major control area, and the eastern coastal region of Zhejiang is typhoon major control area. 2) Within a long period in the future, Zhejiang will be in the long period that features droughts. 3) In Zhejiang the 17th century was frequent drought and flood period, the 16th, 19th, and 20th centuries were normal periods, while the 18th century was spasmodic drought and flood period. 4) The severe and medium floods in Zhejiang were all centered around the M-or m-year of the 11-year sunspot activity period. 5) There are biggish years of annual runoff occurred in E1 Nifio year (E) or the following year (E+1) in Zhejiang. The near future evolution trend of droughts and floods in Zhejiang is as follows: 1) Within a relatively long period in the future, Zhejiang Province will be in the long period of mostly drought years. 2) Between 1999 and 2009 this area will feature drought years mainly, while the period of 2010-2020 will feature flood years mostly. 3) Zhejiang has a good response to the sunspot activities, and the years around 2009, 2015, and 2020 must be given due attention, especially around 2020 there might be an extremely severe flood year in Zhejiang. 4) Floods in Zhejiang have good response to El Nifio events, in El Nifio year or the following year much attention must be paid to. And 5) In the future, the first, second, and third severe typhoon years in Zhejiang will be 2009. 2012. and 2015. resnectivelv.
基金The National Natural Science Foundation of China under contract Nos 90111011 and 10471039the National Key Project for Basics Research of China under contract Nos 2003CB415101-03 and 2004CB418304+1 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences under contract NO.KZCXZ-YW-Q03-08LASG State Key Laboratory Special Fund and the E-Insitutes of Shanghai Municipal Education Commission under contract NO.N.E03004
文摘A class of coupled system of the E1 Nino/La Nina-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behavior of solution for corresponding problem is considered.
基金This work was supported by The National Key Basic Reserch and Development Project of China(2004CB418303)Project 4023100 of the Major Research Program for Global Change and Regional ResponseNational Natural Science Foundation of China(Grant No.40231005).
文摘The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.
基金Science and Technology Foundation of State Grid Corporation of China
文摘This study investigates the influences of tropical Indian Ocean(TIO) warming on tropical cyclone(TC)genesis in different regions of the western North Pacific(WNP) from July to October(JASO) during the decaying El Nio. The results show significant negative TC frequency anomalies localized in the southeastern WNP. Correlation analysis indicates that a warm sea surface temperature anomaly(SSTA) in the TIO strongly suppresses TC genesis south of 21°N and east of 140°E in JASO. Reduced TC genesis over the southeastern WNP results from a weak monsoon trough and divergence and subsidence anomalies associated with an equatorial baroclinic Kelvin wave. Moreover,suppressed convection in response to a cold local SSTA, induced by the increased northeasterly connected by the wind-evaporation-SST positive feedback mechanism, is found unfavorable for TC genesis. Positive TC genesis anomalies are observed over higher latitudinal regions(at around 21°N, 140°E) and the western WNP because of enhanced convection along the northern flank of the WNP anomalous anticyclone and low-level convergence,respectively. Although local modulation(e.g., local SST) could have greater dominance over TC activity at higher latitudes in certain anomalous years(e.g., 1988), a warm TIO SSTA can still suppress TC genesis in lower latitudinal regions of the WNP. A better understanding of the contributions of TIO warming could help improve seasonal TC predictions over different regions of the WNP in years of decaying El Nio.
基金Supported by the National Basic Research Program of China(973 Program)(Nos.2012CB957704,2009CB723903)the National Natural Science Foundation of China(Nos.40506035,40876005)
文摘By analyzing the variability of global SST (sea surface temperature) anomalies, we propose a unified Nifio index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7~C contour line of the standard deviation of the SST anomalies and try to unify the traditional Nifio regions into a single entity. The unified Nifio region covers almost all of the traditional Nifio regions. The anomaly time series of the averaged SST over this region are closely correlated to historical Nifio indices. The anomaly time series of the zonal and meridional thermal centroid have close correlation with historical TNI (Trans-Nifio index) indices, showing differences among E1 Nifio (La Nifia) events. The meridional centroid anomaly suggests that areas of maximum temperature anomaly are moving meridionally (although slightly) with synchronous zonal movement. The zonal centroid anomalies of the unified Nifio region are found helpful in the classification of the Eastern Pacific (EP)/Central Pacific (CP) types of E1 Nifio events. More importantly, the zonal centroid anomaly shows that warm areas might move during a single warming/cooling phase. All the current Nifio indices can be well represented by a simple linear combination of unified Nifio indices, which suggests that the thermal anomaly (SSTA) and thermal centroid location anomaly of the unified Nifio region would yield a more complete image of each E1 Nifio/ La Nina event.
文摘Based on the study of the cold phase of the Pacific Decade Oscillation, pandemic influenza is related to climate. The relation of low temperature, Pacific Decade Oscillation, strongest earthquake, Influenza, hurricane and E1 Nino is researched in this study. In the cold period of Pacific Decade Oscillation, the strongest earthquake, hurricane with La Ni'na, Pandemic Influenza with E1 Nino will occur stronger and stronger. From 1950 to 1976, the strongest dust-storm is connected with Pandemic Influenza one by one. So, dust-storm is one of factors to spread pandemic influenza viruses.
基金Project supported by the National Natural Science Foundation of China (Grants Nos: D06-40552002, 40576016) the Qingdao Municipal Bureau of Science and Technology (Grant No: 02-KJYSH-03).
文摘The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) at the surface in the western North Pacific Ocean. Calculations show that on annual average the bifurcation occurs at about 13.4°N at the surface. The geostrophic flow derived from Sea Surface Height (SSH) data shows that the southernmost latitude of the NEC bifurcation at the surface is about 12.9°N in June and the northernmost latitude is about 14.1°N in December. Correlation analyses between the bifurcation latitude and the Southern Oscillation Index (SOl) suggest that the bifurcation latitude is highly correlated with the E1 Nino/Southern Oscillation (ENSO) events. During the E1 Nino years the bifurcation of the NEC takes place at higher latitudes and vice versa.