Conditions of gallium plating of metal electrodes were studied in the paper. It was found that stability of gallium cover depends on the material and is increasing in the raw: stainless steel 08Х18Н12Т < Steel 1...Conditions of gallium plating of metal electrodes were studied in the paper. It was found that stability of gallium cover depends on the material and is increasing in the raw: stainless steel 08Х18Н12Т < Steel 1, Steel 2, Steel 3, Steel 45 < Ni < Cd < Cu. Phase composition of the electrode surface layer obtained after gallium plating was studied. It was found that gallium with nickel form Ga36Ni64(Ga Ni2) compound and gallium with copper form CuGa2compound. Different acids were used for electrode leaching: H2SO4;HNO3;H3PO4;HCI. It was shown that only hydrochloric acid is suit-able for gallium plating of the electrodes.展开更多
The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interc...The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interconnected Ni(Fe)OxHy nanosheet array on a stainless steel mesh (SSNNi) as an integrated OER electrode, without using any polymer binder. Benefiting from the well- defined three-dimensional (3D) architecture with highly exposed surface area, intimate contact between the active species and conductive substrate improved electron and mass transport capacity, facilitated electrolyte penetration, and improved mechanical stability. The SSNNi electrode also has excellent OER performance, including low overpotential, a small Tafel slope, and long-term durability in the alkaline electrolyte, making it one of the most promising OER electrodes developed.展开更多
The effect of nonmetallic inclusions in the droplet of the stainless steel covered electrode on the porosity was researched.The result shows that the nonmetallic inclusions in the droplet are spherical,their compositi...The effect of nonmetallic inclusions in the droplet of the stainless steel covered electrode on the porosity was researched.The result shows that the nonmetallic inclusions in the droplet are spherical,their composition is different from the one of slag and the inclusions have the character of “inner formation”.When the ratio of rutile to ilmenite in the coated material is increased, the droplet becomes coarse, the content of nonmetallic inclusion in the droplet decreases,and the porosity sensitivity in the weld metal also decreases.When the ratio of fledspar to ilmenite in the coated material is increased, the droplet becomes fine,the content of nonmetallic inclusion in the droplet increases, and the porosity sensitivity in the weld metal increases. When the ratio of Fe_2O_3 to ilmenite in the coated material is increased, the droplet becomes fine, the content of nonmetallic inclusion decreases, while the porosity sensitivity does not reduce.展开更多
文摘Conditions of gallium plating of metal electrodes were studied in the paper. It was found that stability of gallium cover depends on the material and is increasing in the raw: stainless steel 08Х18Н12Т < Steel 1, Steel 2, Steel 3, Steel 45 < Ni < Cd < Cu. Phase composition of the electrode surface layer obtained after gallium plating was studied. It was found that gallium with nickel form Ga36Ni64(Ga Ni2) compound and gallium with copper form CuGa2compound. Different acids were used for electrode leaching: H2SO4;HNO3;H3PO4;HCI. It was shown that only hydrochloric acid is suit-able for gallium plating of the electrodes.
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 51472209, U1401241, 51522101, 51471075, 5163100, and 51401084), and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110061120040).
文摘The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interconnected Ni(Fe)OxHy nanosheet array on a stainless steel mesh (SSNNi) as an integrated OER electrode, without using any polymer binder. Benefiting from the well- defined three-dimensional (3D) architecture with highly exposed surface area, intimate contact between the active species and conductive substrate improved electron and mass transport capacity, facilitated electrolyte penetration, and improved mechanical stability. The SSNNi electrode also has excellent OER performance, including low overpotential, a small Tafel slope, and long-term durability in the alkaline electrolyte, making it one of the most promising OER electrodes developed.
文摘The effect of nonmetallic inclusions in the droplet of the stainless steel covered electrode on the porosity was researched.The result shows that the nonmetallic inclusions in the droplet are spherical,their composition is different from the one of slag and the inclusions have the character of “inner formation”.When the ratio of rutile to ilmenite in the coated material is increased, the droplet becomes coarse, the content of nonmetallic inclusion in the droplet decreases,and the porosity sensitivity in the weld metal also decreases.When the ratio of fledspar to ilmenite in the coated material is increased, the droplet becomes fine,the content of nonmetallic inclusion in the droplet increases, and the porosity sensitivity in the weld metal increases. When the ratio of Fe_2O_3 to ilmenite in the coated material is increased, the droplet becomes fine, the content of nonmetallic inclusion decreases, while the porosity sensitivity does not reduce.