An environmental barrier coating(EBC) consisting of a silicon bond coat and an Yb2-SiO5 top-coat was sprayed on a carbon fibers reinforced SiC ceramic matrix composite(CMC) by atmospheric plasma spray(APS). The micros...An environmental barrier coating(EBC) consisting of a silicon bond coat and an Yb2-SiO5 top-coat was sprayed on a carbon fibers reinforced SiC ceramic matrix composite(CMC) by atmospheric plasma spray(APS). The microstructure of the coating annealed at 1300 ℃ and its high-temperature oxidation behavior at 1350 ℃ were investigated. The significant mass loss of silica during the plasma spray process led to the formation of Yb2SiO5 and Yb2O3 binary phases in the top-coat. Eutectics of Yb2SiO5 and Yb2O3 were precipitated in the top-coat, and channel cracks were formed in the top-coat after 20 h annealing because of the mismatch between the coefficients of thermal expansion(CTEs) of Yb2SiO5 and the SiC substrate. The EBC effectively improved the oxidation resistance of the CMC substrate. The channel cracks in the Yb2SiO5 top-coat provided inward diffusion channels for oxygen and led to the formation of oxidation delamination cracks in the bond coat, finally resulting in spallation failure of the coating after 80 h oxidation.展开更多
基金sponsored by the National Natural Science Foundation of China (NSFC) under grant Nos. 51590894, 51425102, and 51231001
文摘An environmental barrier coating(EBC) consisting of a silicon bond coat and an Yb2-SiO5 top-coat was sprayed on a carbon fibers reinforced SiC ceramic matrix composite(CMC) by atmospheric plasma spray(APS). The microstructure of the coating annealed at 1300 ℃ and its high-temperature oxidation behavior at 1350 ℃ were investigated. The significant mass loss of silica during the plasma spray process led to the formation of Yb2SiO5 and Yb2O3 binary phases in the top-coat. Eutectics of Yb2SiO5 and Yb2O3 were precipitated in the top-coat, and channel cracks were formed in the top-coat after 20 h annealing because of the mismatch between the coefficients of thermal expansion(CTEs) of Yb2SiO5 and the SiC substrate. The EBC effectively improved the oxidation resistance of the CMC substrate. The channel cracks in the Yb2SiO5 top-coat provided inward diffusion channels for oxygen and led to the formation of oxidation delamination cracks in the bond coat, finally resulting in spallation failure of the coating after 80 h oxidation.