为解决电控空气悬架(electric control air suspension,简称ECAS)车身高度切换过程中的振荡及"过充"、"过放"现象,以空气弹簧特性为媒介,与车辆动力学相结合,对车身高度调节系统的进行建模。通过遗传算法优化车身...为解决电控空气悬架(electric control air suspension,简称ECAS)车身高度切换过程中的振荡及"过充"、"过放"现象,以空气弹簧特性为媒介,与车辆动力学相结合,对车身高度调节系统的进行建模。通过遗传算法优化车身高度调节系统PID的控制参数,提出一种新的积分分离PID控制策略。采用Matlab/Simulink搭建模型并对控制前、后仿真结果进行了对比。结果证明,所设计的控制方法能有效解决以上问题,优化后的车身高度调节系统能显著减少汽车振荡及干扰,操纵稳定性得到改善。展开更多
This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending En...This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending Enhanced Combination Algorithm (ECA) is proposed.The analysis of the generalized property and sample error shows that the ECA can heighten the study speed and reduce individual error.展开更多
文摘为解决电控空气悬架(electric control air suspension,简称ECAS)车身高度切换过程中的振荡及"过充"、"过放"现象,以空气弹簧特性为媒介,与车辆动力学相结合,对车身高度调节系统的进行建模。通过遗传算法优化车身高度调节系统PID的控制参数,提出一种新的积分分离PID控制策略。采用Matlab/Simulink搭建模型并对控制前、后仿真结果进行了对比。结果证明,所设计的控制方法能有效解决以上问题,优化后的车身高度调节系统能显著减少汽车振荡及干扰,操纵稳定性得到改善。
基金the National Defense Research item "Data fusion" of Tenth Five-Year Plan 102010203
文摘This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending Enhanced Combination Algorithm (ECA) is proposed.The analysis of the generalized property and sample error shows that the ECA can heighten the study speed and reduce individual error.