期刊文献+
共找到349篇文章
< 1 2 18 >
每页显示 20 50 100
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
1
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 engineered cementitious composites fly ash curing time tensile strain capacity MODELING
下载PDF
Shrinkage Reducing Measures for Engineering Cementitious Composites 被引量:1
2
作者 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期907-911,共5页
Inhibition measurement of shrinkage of engineering cementitious composites (ECC) was investigated due to typical ECC with higher free drying shrinkage.The effects of expanded admixture (EA),shrinkage reducing admi... Inhibition measurement of shrinkage of engineering cementitious composites (ECC) was investigated due to typical ECC with higher free drying shrinkage.The effects of expanded admixture (EA),shrinkage reducing admixture (SRA),coarse sand+stone powder (CS+SP) and superabsorbent polymer (SAP) on drying shrinkage and mechanical properties were studied.The experimental results show that ECC incorporating EA,SRA and coarse sand can retain around 60% of the typical ECC's free drying shrinkage.Superabsorbent polymerl(SAP) can delay the development of free drying shrinkage of ECC at different ages,and the effect of SAP is not distinct like the actions of EA,superabsorbent polymer(SRA) and coarse sand.Significantly,SAP may act as artificial flaw to form a more homogeneous defect system that increases the potential of saturated multiple cracking,hence the ductility of ECC will be improved greatly. 展开更多
关键词 engineered cementitious composites ecc SHRINKAGE SAP
下载PDF
Development of engineered cementitious composites with local ingredients 被引量:11
3
作者 钱吮智 张志刚 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期327-330,共4页
In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA f... In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA fibers along with other local ingredients,such as fly ash,cement and sand.In addition to the economic analysis of ECC,the four-point bending test and the optical microscope are employed to investigate the deflection capacity of ECC,its crack width and the occurrence of the self-healing phenomenon.The experimental results suggest that ECC made with domestic ingredients exhibits larger deformability and the average crack width is controlled around 60 μm.Furthermore,the self-healing behavior is observed in cracks of the specimens after cycles of wet and dry curing.The economic analysis shows that the cost of ECC can be greatly reduced via employing domestic PVA fibers.It is,therefore,feasible to produce low cost ECC material employing domestic PVA fibers,while simultaneously retaining high material ductility. 展开更多
关键词 engineered cementitious compositesecc high tensile ductility material cost feasibility study
下载PDF
High Temperature Flexural Deformation Properties of Engineered Cementitious Composites (ECC) with Hybrid Fiber Reinforcement 被引量:4
4
作者 Zhihui YU Zhen YUAN +1 位作者 Chaofan XIA Cong ZHANG 《Research and Application of Materials Science》 2020年第2期17-26,共10页
Engineered Cementitious Composites(ECC)is a class of high-performance fiber reinforced composites with ultra-ductility designed based on micromechanics,and it has been developed for increasing application in the const... Engineered Cementitious Composites(ECC)is a class of high-performance fiber reinforced composites with ultra-ductility designed based on micromechanics,and it has been developed for increasing application in the construction industry during recent decades.The properties of ECC at room temperature have been tested and studied in depth,however,few studies focus on its performance after high temperature that is one of the worst conditions to ECC.To investigate the change tendency and mechanism for the high temperature flexural properties of hybrid fiber reinforced ECC and the feasibility of calcium carbonate whisker to reduce the cost of ECC materials,polyvinyl alcohol fiber(PVA)reinforced strain hardening cementitious composites(PVA-ECC),steel fiber+PVA fiber reinforced ECC(defined as HyFRECC-A)and steel fiber+PVA fiber+CaCO3 whisker reinforced ECC(defined as HyFRECC-B)subject to room temperature and 200℃,400℃,600℃,800℃elevated temperature exposure were experimentally compared.The results indicate that equally replacing PVA fibers by steel fibers degraded the flexural hardening ability of PVA-ECC at room temperature,while the addition of appropriate amount of CaCO3 whisker improved the flexural strength,toughness and flexural hardening behavior.The elevated temperature posed a significant effect on the flexural strength and toughness of the three types of ECCs.Flexural deflection hardening behavior of the three types of ECCs was eliminated after high temperature exposure.Flexural strength and toughness of PVA-ECC presented an exponential decay along with the increase of temperature.The addition of steel fiber slowed down the decay rate.Although the use of CaCO3 whisker increased the post-temperature flexural strength and toughness of HyFRECC-B,the decay rate was not further decreased. 展开更多
关键词 engineered cementitious composites hybrid fiber high temperature flexural behavior
下载PDF
Impact Properties of Engineered Cementitious Composites with High Volume Fly Ash Using SHPB Test 被引量:10
5
作者 陈智韬 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期590-596,共7页
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic ... The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs. 展开更多
关键词 engineered cementitious composites high volume fly ash impact properties SHPB
下载PDF
Effects of Water/Binder Ratio on the Properties of Engineered Cementitious Composites 被引量:3
6
作者 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期298-302,共5页
The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0... The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0.37 were selected and the specimens were tested at the ages of 7 d and 28 d. The experimental results showed that there was a corresponding increase in first cracking strength, modulus of rupture, compressive strength and flexural strength with the decrease of w/b. Within the w/b range of 0.25-0.37, higher w/b was found to have improved effects on deflection, strain hardening index and toughness index of ECC. In the permission of meeting the requirement of compressive strength grade, selecting higher w/b in mix design will help to obtain robust ECC. 展开更多
关键词 engineered cementitious composites ecc TOUGHNESS water/binder ratio compressive strength
下载PDF
Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures 被引量:4
7
作者 WANG Zhen-bo HAN Shuo +2 位作者 SUN Peng LIU Wei-kang WANG Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1459-1475,共17页
In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.F... In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance. 展开更多
关键词 engineered cementitious composites hybrid fiber basalt fiber mechanical properties elevated temperature
下载PDF
Influence of Thickeners on Cement Paste Structure and Performance of Engineered Cementitious Composites
8
作者 陈拴发 何锐 +2 位作者 LI Yongpeng XING Mingliang CONG Peiliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第2期285-290,共6页
Hydroxypropyl methylcellulose (HPMC) and amphoteric polyacrylamide (ACPAM) were respectively used to prepare engineered cementitious composite (ECC) which exhibits strain-hardening behavior under uniaxial tensio... Hydroxypropyl methylcellulose (HPMC) and amphoteric polyacrylamide (ACPAM) were respectively used to prepare engineered cementitious composite (ECC) which exhibits strain-hardening behavior under uniaxial tension. The connections between cement paste structure and the performance of the composite in fresh and hardened state were investigated, aiming at achieving the desirable workability at a given solids concentration. The experimental results of viscosity and miCrostructure of cement pastes show that the intimate connections between flocculation groups lead to the growing increase in viscosity. The results of deformability and fiber dispersion demonstrate that fiber dispersion coefficient is a comprehensive index which can reflect the performance of deformability as well as uniformity. And the desirable fresh mixture can be achieved by optimizing the viscosity of cement paste. At last, the ductile strain-hardening performance of the ECC prepared with HPMC or ACPAM was investigated through uniaxial tensile test. 展开更多
关键词 engineered cementitious composites THICKENER MICROSTRUCTURE fiber dispersion
下载PDF
Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams 被引量:8
9
作者 蔡景明 潘金龙 袁方 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期330-335,共6页
To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected t... To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams. 展开更多
关键词 engineered cementitious composites ecc DUCTILITY flexural behavior finite element
下载PDF
Flexural behavior of steel reinforced engineered cementitious composite beams 被引量:4
10
作者 Dong Bingqing Pan Jinlong Lu Cong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期72-82,共11页
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica... In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams. 展开更多
关键词 engineered cementitious composite(ecc) steel reinforced ecc(SRecc) composite beam flexural behavior ultimate load-carrying capacity
下载PDF
Experimental Study on Improved Engineered Cementitious Composite Using Local Material
11
作者 Fariborz Nateghi-A Mohammad Hossein Ahmadi Ayoub Dehghani 《Materials Sciences and Applications》 2018年第3期315-329,共15页
Engineered Cementitious Composite (ECC) is a cement based material with ultra-high ductility and strength in tension. This material is a kind of highperformance fiber-reinforced cementitious composite materials (HPFRC... Engineered Cementitious Composite (ECC) is a cement based material with ultra-high ductility and strength in tension. This material is a kind of highperformance fiber-reinforced cementitious composite materials (HPFRCCs) reinforced with short fibers and characterized by tight multiple cracking. These characteristics of ECC make it applicable to increase the capacity and the ductility of structural elements so that structural design is economic and sustainable. This paper presents an extended evaluation of Improved Engineered Cementitious Composites (IECC) for the use in the strengthening of masonry in filled reinforced concrete frames. IECC is a mixture of cement, fly ash, water, sand, quartz powder and poly-vinyl alcohol fibers with a better quality of tensile strain rather than common ECC. Two types of fine sand and quartz powder used in this study as filler to improve ECC behavior. Also, to show the effect of fly ash on IECC properties, five different mixtures were considered with various fly ash ratios. Different mixtures of IECC using fine aggregates produced in Iran were selected to find out how the aggregates and fly ash would affect IECC performance. The results show that the optimized mixture has the best characteristics including tensile strength and strain. Also, three-dimensional diagrams were used to compare the properties of different mixtures of IECC more effectively and to represent the influence of the range of fly ash ratios so that it can be opted based on design objectives such as ECC properties, costs and structural parameters and demands. These diagrams show the behavior of IECC which its fly ash content ratio in the binder is 50% to 67%. 展开更多
关键词 IMPROVED engineered cementitious composites Optimization EXPERIMENTAL Study LOCAL MATERIAL
下载PDF
Deformation behavior of high performance fiber reinforced cementitious composite prepared with asphalt emulsion 被引量:4
12
作者 何锐 陈拴发 +1 位作者 孙文娟 弓锐 《Journal of Central South University》 SCIE EI CAS 2014年第2期811-816,共6页
A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in exp... A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in experiments,including four-point bending test,compressive test,and scanning electric microscopy(SEM).The SEM observation was conducted to evaluate the contribution of polyvinyl alcohol(PVA) fiber and asphalt emulsion to the composite toughening mechanism.The tests results show that the most remarkable deflection-hardening behavior and saturated multiple cracking are achieved when the content of asphalt emulsion is 10%.However,excessive content of asphalt emulsion causes severe damages on the deformation behavior as well as loss in compressive strength of the mixture.SEM observation indicates that the influence of asphalt emulsion on the fiber/matrix interfacial property changes the dominant fiber failure type from rupture into pull-out mode,and thus causes beneficial effects for strain-hardening behavior. 展开更多
关键词 TOUGHNESS deformation behavior engineered cementitious composite asphalt emulsion
下载PDF
Flexural behaviors of steel reinforced ECC/concrete composite beams 被引量:8
13
作者 董洛廷 潘金龙 +1 位作者 袁方 梁坚凝 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期195-202,共8页
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas... An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value. 展开更多
关键词 engineered cementitious composites ecc reinforced concrete composite beam flexural properties load carrying capacity
下载PDF
盐冻耦合环境下再生砖粉ECC的耐久性研究 被引量:1
14
作者 楚留声 张鹏 +2 位作者 赫约西 元成方 程站起 《硅酸盐通报》 CAS 北大核心 2024年第3期1012-1020,共9页
利用再生砖粉取代工程水泥基复合材料(ECC)中的石英砂,制备再生砖粉ECC,采用混凝土快速冻融试验,研究了氯盐、硫酸盐及复合盐(氯盐+硫酸盐)溶液侵蚀作用下再生砖粉ECC的质量损失率和相对动弹性模量变化规律,建立了ECC在盐冻侵蚀环境下... 利用再生砖粉取代工程水泥基复合材料(ECC)中的石英砂,制备再生砖粉ECC,采用混凝土快速冻融试验,研究了氯盐、硫酸盐及复合盐(氯盐+硫酸盐)溶液侵蚀作用下再生砖粉ECC的质量损失率和相对动弹性模量变化规律,建立了ECC在盐冻侵蚀环境下的损伤模型,并对其耐久性进行评价。结果表明:冻融循环300次后,再生砖粉ECC在清水、氯盐、硫酸盐及复合盐四种介质中的质量损失率分别为2.884%、4.984%、1.955%和6.891%,相对动弹性模量分别下降了6.468%、16.300%、24.303%和39.861%;再生砖粉ECC在单一盐冻情况下的抗冻等级大于F300,在复合盐冻情况下的抗冻等级大于F250,具有良好的抗盐冻性能;建立的冻融损伤模型可较好地反映ECC在不同冻融介质下的损伤度Dn与冻融循环次数的关系,可以为严寒地区的结构耐久性设计提供有效参考。 展开更多
关键词 再生砖粉 工程水泥基复合材料 盐类侵蚀 冻融循环 质量损失率 相对动弹性模量 冻融损伤模型
下载PDF
复掺碳酸钙晶须增强轻质ECC材料力学性能研究
15
作者 王博 丁庆军 +1 位作者 王君 邓建平 《混凝土》 CAS 北大核心 2024年第7期133-137,共5页
工程水泥基复合材料(ECC)由于其拉伸应变硬化行为和紧密多裂缝的独特特性能够满足混凝土基础设施韧性和耐久性的严格要求。使用粉煤灰漂珠代替细石英砂作为轻质细集料,使用国内高强高模量PVA和PE纤维,并复掺碳酸钙晶须对ECC进行多尺度增... 工程水泥基复合材料(ECC)由于其拉伸应变硬化行为和紧密多裂缝的独特特性能够满足混凝土基础设施韧性和耐久性的严格要求。使用粉煤灰漂珠代替细石英砂作为轻质细集料,使用国内高强高模量PVA和PE纤维,并复掺碳酸钙晶须对ECC进行多尺度增强,对轻质ECC的强度、单轴拉伸性能、薄板四点弯曲性能和孔隙率等进行试验研究。结果表明:碳酸钙晶须掺量为体积的1%时最佳,PVA-ECC抗压强度为57 MPa,极限拉伸强度为4.31 MPa,拉伸应变为3.44%;而PE-ECC抗压强度为60.4 MPa,极限拉伸强度为4.77 MPa,拉伸应变为8.16%。适量的晶须掺入,能够优化孔隙结构,提升强度,晶须微观桥接作用可延缓了微观裂纹发展,同时晶须可以增加界面粗糙度,提高摩擦结合强度,从而提高ECC拉伸应变能力。 展开更多
关键词 工程水泥基复合材料 碳酸钙晶须 力学性能
下载PDF
Mechanical behaviors of steel reinforced ECC / concrete composite columns under combined vertical and horizontal loading 被引量:7
16
作者 单奇峰 潘金龙 陈俊涵 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期259-265,共7页
In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composit... In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application. 展开更多
关键词 engineered cementitious composites ecc ecc/RC composite columns compression-bending behavior numerical analysis parametric analysis
下载PDF
PVA-ECC高温冷却后力学特性与微观损伤机理
17
作者 武芳文 何岚清 +3 位作者 段钧淇 王广倩 刘来君 杨飞 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第9期140-149,共10页
为研究工程水泥基复合材料(engineered cementitious composite,ECC)高温后的力学性能和微观特征,对ECC进行了高温后材料力学性能试验和微观特征观测。对常温(25℃)、200℃、300℃、400℃及500℃自然冷却和喷水冷却后的ECC试件开展了抗... 为研究工程水泥基复合材料(engineered cementitious composite,ECC)高温后的力学性能和微观特征,对ECC进行了高温后材料力学性能试验和微观特征观测。对常温(25℃)、200℃、300℃、400℃及500℃自然冷却和喷水冷却后的ECC试件开展了抗压和抗折性能试验,并结合扫描电镜分析了ECC微观结构损伤特征以及探究了ECC高温后损伤机理。实验结果表明:高温后ECC表面未发生剥落,500℃以内未见爆裂现象,随着温度升高,纤维由混凝土表面逐渐向内部熔化,且失水增多,最大烧失率13.9%;力学性能方面,ECC自然冷却后抗压强度随温度升高呈现先降低后升高再降低的现象,而喷水冷却后抗压强度随温度的升高单调降低,且强度降低显著;高温后抗折强度随温度升高逐步下降,自然冷却降低幅度较喷水冷却显著;结合微观结构变化,ECC经历高温时,纤维部分熔化导致纤维与基体的黏结性能减弱;随着温度升高水化产物之间逐渐呈现独立存在的分散体,但喷水冷却后未水化颗粒二次水化现象明显,使ECC抗折强度较自然冷却提升17%。ECC具有良好的热稳定性,且冷却方式影响ECC材料的表观特性、力学性能和微观特征。 展开更多
关键词 桥梁工程 力学特性 高温试验 ecc 微观结构 冷却方式
下载PDF
环绕黏结CFRP-ECC修复混凝土的动态力学和能量特性
18
作者 庞建勇 韩辰悦 胡时 《公路交通科技》 CAS CSCD 北大核心 2024年第9期87-96,共10页
为了研究环绕黏结碳纤维增强复合材料(CFRP)与工程水泥基复合材料(ECC)构成的复合增强层对小尺寸受损混凝土的修复效果,制备CFRP增强ECC-混凝土组合体试件,采用霍普金森压杆对端面粘贴、环绕粘贴CFRP的组合体进行不同气压下的冲击压缩... 为了研究环绕黏结碳纤维增强复合材料(CFRP)与工程水泥基复合材料(ECC)构成的复合增强层对小尺寸受损混凝土的修复效果,制备CFRP增强ECC-混凝土组合体试件,采用霍普金森压杆对端面粘贴、环绕粘贴CFRP的组合体进行不同气压下的冲击压缩试验。结果表明:两种组合体的峰值应力、峰值应变和动态增长因子均随冲击气压的升高而增大,环绕粘贴CFRP的组合体峰值应力、峰值应变均高于端面粘贴CFRP的组合体,0.5 MPa气压作用下,峰值应力增长达10.9%,峰值应变增长达14.98%。随着气压的升高,两种组合体的动态增长因子均呈增大趋势,两种组合体在0.7 MPa较0.3 MPa作用下,DIF分别提高了56.77%,59.41%,具有明显的应变率增长效应。0.7 MPa气压时,两种组合体的DIF均在1.6左右,因此两者均适用于高动态荷载作用环境。复合增强层为混凝土提供良好的环向约束力,有效抑制裂纹扩展。环绕粘贴CFRP的组合体破坏状态优于端面粘贴CFRP的组合体,抗冲击性能更好。两种组合体的各能量变化趋势相似,均随着气压升高而增大,且环绕粘贴CFRP的组合体较端面粘贴CFRP的组合体能量吸收能力更强,0.7 MPa时的吸收能增幅在5%左右。在小尺寸混凝土修复工程中,环绕粘贴CFRP与ECC构成的复合增强层的修复效果更佳。 展开更多
关键词 道路工程 动态力学特性 冲击压缩 工程水泥基复合材料 修复工程
下载PDF
ECC疲劳损伤规律及微观结构研究
19
作者 蔡靖 刘汉磊 +2 位作者 霍海峰 支雁飞 任彦龙 《中国民航大学学报》 CAS 2024年第1期59-64,共6页
为研究工程水泥基复合材料(ECC,engineered cementitious composites)的疲劳规律并探究其损伤原因,利用疲劳试验机对ECC试件进行单轴拉伸循环加载试验,分析其疲劳规律及损伤界面微观形态。研究结果表明:ECC试件破坏规律与其累积轴向应... 为研究工程水泥基复合材料(ECC,engineered cementitious composites)的疲劳规律并探究其损伤原因,利用疲劳试验机对ECC试件进行单轴拉伸循环加载试验,分析其疲劳规律及损伤界面微观形态。研究结果表明:ECC试件破坏规律与其累积轴向应变速率有关,在加载初始阶段,累积轴向应变会随着循环荷载作用次数增加而明显增大,随后进入稳定变形阶段;进一步加载将导致累积轴向应变快速增长,并最终导致试件断裂破坏;ECC的裂纹宽度发展呈现出中间低、两端高的趋势;ECC试件在循环荷载过程中初次开裂后,不会迅速进入破坏阶段,是因为纤维仍然具有抗拉能力,可继续承受循环荷载加载;通过对纤维-基体界面的微观分析发现,纤维与基体结合较好,可整体耗散能量,为ECC具有高疲劳性能的主要原因。 展开更多
关键词 水泥基复合材料 微观结构 轴向拉伸疲劳 数字成像技术
下载PDF
Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading 被引量:8
20
作者 Pan Jinlong Mo Chuang +1 位作者 Xu Li Chen Junhan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期70-78,共9页
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col... To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures. 展开更多
关键词 engineered cementitious composites ecc ecc/RC composite columns hysteretic curves DUCTILITY energy dissipation parametric analysis
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部