期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cardiovascular Disease Prediction Among the Malaysian Cohort Participants Using Electrocardiogram
1
作者 Mohd Zubir Suboh Nazrul Anuar Nayan +7 位作者 Noraidatulakma Abdullah Nurul Ain Mhd Yusof Mariatul Akma Hamid Azwa Shawani Kamalul Arinfin Syakila Mohd Abd Daud Mohd Arman Kamaruddin Rosmina Jaafar Rahman Jamal 《Computers, Materials & Continua》 SCIE EI 2022年第4期1111-1132,共22页
A comprehensive study was conducted to differentiate cardiovascular disease (CVD) subjects from non-CVD subjects using short recording electrocardiogram (ECG) of 244 Malaysian adults in The MalaysianCohort project. An... A comprehensive study was conducted to differentiate cardiovascular disease (CVD) subjects from non-CVD subjects using short recording electrocardiogram (ECG) of 244 Malaysian adults in The MalaysianCohort project. An automated peak detection algorithm to detect nine fiducialpoints of electrocardiogram (ECG) was developed. Forty-eight features wereextracted in both time and frequency domains, including statistical featuresobtained from heart rate variability and Poincare plot analysis. These includefive new features derived from spectrum counts of five different frequencyranges. Feature selection was then made based on p-value and correlationmatrix. Selected features were used as input for five classifiers of artificialneural network (ANN), k-nearest neighbors (kNN), support vector machine(SVM), discriminant analysis (DA), and decision tree (DT). Results showedthat six features related to T wave were statistically significant in distinguishingCVD and non-CVD groups. ANN had performed the best with 94.44% specificity and 86.3% accuracy, followed by kNN with 80.56% specificity, 86.49%sensitivity and 83.56% accuracy. The novelties of this study were in providingalternative solutions to detect P-onset, P-offset, T-offset as well as QRS-onsetpoints using discrete wavelet transform method. Additionally, two out of thefive newly proposed spectral features were significant in differentiating bothgroups, at frequency ranges of 1–10 Hz and 5–10 Hz. The prediction outcomeswere also comparable to previous related studies and significantly importantin using ECG to predict cardiac-related events among CVD and non-CVDsubjects in the Malaysian population. 展开更多
关键词 Cardiovascular disease ecg fiducial point detection ELECTROCARDIOGRAM feature extraction machine learning
下载PDF
Micro EEG/ECG signal's chopper-stabilization amplifying chip for novel drycontact electrode 被引量:1
2
作者 Jianhui Sun Chunxing Wang +8 位作者 Gongtang Wang Jinhui Wang Qing Hua Chuanfu Cheng Xinxia Cai Tao Yin Yang Yu Haigang Yang Dengwang Li 《Journal of Semiconductors》 EI CAS CSCD 2017年第2期96-104,共9页
Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro sign... Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL(ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier's outputting terminal. The single-stage chopping core's noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB(positive feedback loop) to increase the inputting resistance, and the NFB(negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF(voltage gain amplifier/band pass filter) circuit is used to tune the chopper system's gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms(@band-widthD100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO's data capturing DAQmx interface,and the captured micro EEG/ECG's waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal's detection instrument and has a critical real application value. 展开更多
关键词 EEG/ecg novel dry-contact electrode weak and micro signal detection chopping modulation/demodulation de-noising gain/band width digitally tuning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部