期刊文献+
共找到1,542篇文章
< 1 2 78 >
每页显示 20 50 100
Robust Low-Power Algorithm for Random Sensing Matrix for Wireless ECG Systems Based on Low Sampling-Rate Approach
1
作者 Mohammadreza Balouchestani Kaamran Raahemifar Sridhar krishnan 《Journal of Signal and Information Processing》 2013年第3期125-131,共7页
The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve ex... The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix. 展开更多
关键词 SENSING Matrix Power CONSUMPTION Normal and ABNORMAL ecg Signal Compressed SENSING Block Sparse BAYESIAN learning
下载PDF
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
2
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ecg) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
下载PDF
基于深度学习的ECG信号分类与诊断
3
作者 张占 何朗 +3 位作者 张金鹏 王涛 陈为满 娄文璐 《生物医学工程与临床》 CAS 2024年第3期431-437,共7页
心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及... 心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及时更新等未能解决的问题。因此,笔者首先对近10年来基于机器学习的ECG信号分类从波形形态分类、疾病诊断分类和纯粹的机器学习分类研究进行了回顾与综述,总结出了目前的研究遇到的困境,最后对未来面临的问题进行展望。深入学习模型在现实应用中仍存在一些挑战,未来的研究将进一步探索在芯片中实现机器学习模型的便携性和成本效益的硬件解决方案。此外,机器学习算法应寻求最佳的计算开销平衡,并重视在现实世界环境中的应用。在未来研究中,ECG应多进行临床试验,以评估机器学习模型在处理实际生物医学信号时的有效性和可行性,同时构造性价比高的深度学习模型,以帮助医学专家进行精确和及时的预测和诊断。 展开更多
关键词 ecg 机器学习 深度学习 心血管疾病
下载PDF
TinyML-Based Classification in an ECG Monitoring Embedded System
4
作者 Eunchan Kim Jaehyuk Kim +2 位作者 Juyoung Park Haneul Ko Yeunwoong Kyung 《Computers, Materials & Continua》 SCIE EI 2023年第4期1751-1764,共14页
Recently, the development of the Internet of Things (IoT) hasenabled continuous and personal electrocardiogram (ECG) monitoring. In theECG monitoring system, classification plays an important role because it canselect... Recently, the development of the Internet of Things (IoT) hasenabled continuous and personal electrocardiogram (ECG) monitoring. In theECG monitoring system, classification plays an important role because it canselect useful data (i.e., reduce the size of the dataset) and identify abnormaldata that can be used to detect the clinical diagnosis and guide furthertreatment. Since the classification requires computing capability, the ECGdata are usually delivered to the gateway or the server where the classificationis performed based on its computing resource. However, real-time ECG datatransmission continuously consumes battery and network resources, whichare expensive and limited. To mitigate this problem, this paper proposes atiny machine learning (TinyML)-based classification (i.e., TinyCES), wherethe ECG monitoring device performs the classification by itself based onthe machine-learning model, which can reduce the memory and the networkresource usages for the classification. To demonstrate the feasibility, afterwe configure the convolutional neural networks (CNN)-based model usingECG data from the Massachusetts Institute of Technology (MIT)-Beth IsraelHospital (BIH) arrhythmia and the Physikalisch Technische Bundesanstalt(PTB) diagnostic ECG databases, TinyCES is validated using the TinyMLsupportedArduino prototype. The performance results show that TinyCEScan have an approximately 97% detection ratio, which means that it has greatpotential to be a lightweight and resource-efficient ECG monitoring system. 展开更多
关键词 HOLTER ecg ARDUINO internet of things(IoT) TinyML
下载PDF
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
5
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid Sheeraz Akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ecg false positive rate deep learning CLASSIFICATION
下载PDF
Emotion Detection Using ECG Signals and a Lightweight CNN Model
6
作者 Amita U.Dessai Hassanali G.Virani 《Computer Systems Science & Engineering》 2024年第5期1193-1211,共19页
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an... Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed. 展开更多
关键词 Emotions AMIGOS ecg LIGHTWEIGHT 1D CNN
下载PDF
Efficient ECG classification based on Chi-square distance for arrhythmia detection
7
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification Chi-square distance Electrocardiogram(ecg)signal Particle swarm optimization(PSO)
下载PDF
全面解读IA ECG广色域测试版ICC文件
8
作者 姚磊磊 赵广 《中国印刷》 2024年第2期56-61,共6页
七色分色技术已发展多年,欧美印刷机构和协会相继投人研发和制定更新相关标准体系,当前色彩校准技术手段等条件正走向成熟,本文对IAECG广色域测试版ICC文件进行全面解读。
关键词 测试版 广色域 ecg 全面解读 色彩校准 分色技术 技术手段
下载PDF
以BP神经网络为工具的短时ECG信号情感分类
9
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ecg信号 机器识别
下载PDF
基于卷积神经网络与ECG信息的多模态疲劳驾驶检测研究
10
作者 闫凯航 石岩松 +5 位作者 邓炬鑫 李汶翰 庞志颖 翁明珠 潘志广 孙修泽 《电脑知识与技术》 2024年第12期24-26,34,共4页
为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进... 为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进行对比,得出预警结果;接着,结合ECG信号对驾驶员的驾驶状态进行进一步分析,输出最终结果并触发预警。实验结果表明,该方法能够准确识别驾驶员的疲劳状态并及时发出预警,最高检测正确率达到了99%,验证了方法的可行性。 展开更多
关键词 疲劳检测 YOLOv4卷积神经网络模型 面部识别 ecg 特征融合
下载PDF
缓慢型心房颤动(Af)伴发长R-R间期在静态心电图(ECG)中发生率及意义
11
作者 毛社娟 《中文科技期刊数据库(引文版)医药卫生》 2024年第4期0115-0118,共4页
探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);... 探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);按照年龄,分为老年组30例(≥80岁)和非老年组24例(<80岁);比较各组伴发长R-R间期发生率。结果 本试验中,甲、乙组伴发长R-R间期发生率差异明显,甲组发生率显著更高(P<0.05)。老年组、非老年组伴发长R-R间期发生率差异明显,老年组发生率显著更高(P<0.05)。结论 缓慢型心房颤动行静态心电图检查,能够准确诊断患者有无伴发长R-R间期;针对老年患者和伴随头晕、黑朦、晕厥等症状患者,应加强其静态心电图检查,以便更好诊断、鉴别其病情,促使患者尽早接受专业治疗和干预,保证其生命安全与预后质量。 展开更多
关键词 静态心电图(ecg) 缓慢型心房颤动 长R-R间期
下载PDF
基于LSTM网络与ECG信号的青少年运动强度识别方法 被引量:1
12
作者 董晋 季炜然 《印刷与数字媒体技术研究》 CAS 北大核心 2023年第6期49-58,共10页
适当的体育运动有利于青少年身体健康,但是大多数青少年在运动过程中,盲目地进行高强度的体育锻炼,很容易造成身体的损伤甚至危及生命。因此,为了实现对青少年运动的合理安排和监测,本研究提出了一种基于长短期记忆人工神经网络(Long Sh... 适当的体育运动有利于青少年身体健康,但是大多数青少年在运动过程中,盲目地进行高强度的体育锻炼,很容易造成身体的损伤甚至危及生命。因此,为了实现对青少年运动的合理安排和监测,本研究提出了一种基于长短期记忆人工神经网络(Long Short-Term Memory,LSTM)与心电图(Electrocardiogram,ECG)信号的青少年运动强度识别方法。该方法可以在体育锻炼中实时监测运动强度,防止体育运动中不合理锻炼带来的危险。本研究算法采用多层的LSTM网络提取运动过程中的ECG信号特征,在网络中加入注意力机制,模仿生物的视觉注意力行为,对一段时间序列中的不同区域区别对待,重点关注特征区域,抑制无用信息,进一步提升监测效率和准确率。实验识别准确率可达99.40%,表明所提方法所构建的青少年运动强度诊断模型具有较高的诊断精度,且具有较强的泛化能力。 展开更多
关键词 青少年 LSTM ecg 运动强度
下载PDF
The future of remote ECG monitoring systems 被引量:8
13
作者 Shu-LI GUO Li-Na HAN +3 位作者 Hong-Wei LIU Quan-Jin SI De-Feng KONG Fu-Su GUO 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2016年第6期528-530,共3页
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases... Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and re- ception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, pa- tient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. 展开更多
关键词 Cardiovascular system ecg Remote monitoring
下载PDF
An ECG Monitoring and Alarming System Based On Android Smart Phone 被引量:2
14
作者 Xiaoqiang Guo Xiaohui Duan +2 位作者 Hongqiao Gao Anpeng Huang Bingli Jiao 《Communications and Network》 2013年第3期584-589,共6页
ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring an... ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collects the ECG signal and transmits it to an Android phone. The Android phone detects alarms which come from the ECG devices. When alarms occur, Android phone will capture the ECG images and the details about the alarms, and sends them to the cloud Alarm Server (AS). Once received, AS push the messages to doctors’ phone, so the doctors could see the ECG images and alarm details on their mobile phone. In our system, high resolution ECG pictures are transmitted to doctors’ phone in a user-friendly way, which can help doctors keep track of their patient’s condition easily. 展开更多
关键词 ecg MONITORING system ANDROID SMART PHONE ALARM
下载PDF
A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM 被引量:2
15
作者 Maryam Bukhari Sadaf Yasmin +4 位作者 Sheneela Naz Mehr Yahya Durrani Mubashir Javaid Jihoon Moon Seungmin Rho 《Computers, Materials & Continua》 SCIE EI 2023年第10期1251-1279,共29页
Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular m... Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram(ECG)signals has the potential to save many lives.In existing studies,several heart disease diagnostic systems are proposed by employing different state-of-the-art methods,however,improving such methods is always an intriguing area of research.Hence,in this research,a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals.The proposed framework extracts both linear and time-series information on the ECG signals and fuses them into a single framework concurrently.The linear characteristics of ECG signals are extracted by convolution layers followed by Gaussian Error Linear Units(GeLu)and time series characteristics of ECG beats are extracted by Vanilla Long Short-Term Memory Networks(LSTM).Following on,the feature reduction of linear information is done with the help of ID Generalized Gated Pooling(GGP).In addition,data misbalancing issues are also addressed with the help of the Synthetic Minority Oversampling Technique(SMOTE).The performance assessment of the proposed model is done over the two publicly available datasets named MIT-BIH arrhythmia database(MITDB)and PTB Diagnostic ECG database(PTBDB).The proposed framework achieves an average accuracy performance of 99.14%along with a 95%recall value. 展开更多
关键词 Smart systems deep learning ecg signals heart disease concurrent learning LSTM generalized gated pooling
下载PDF
A ECG Tele-monitoring Method and System Based on Embedded Web Server 被引量:2
16
作者 WU Shui-cai JIA Wen-juan YANG Chun-lan WU Wei-wei LI Yan-zheng 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第3期121-128,共8页
This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet n... This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet networks and computers, with the system operating on browser/server(B/S) mode. The ECG recorder was designed by ARM9 (S3C2410X) and embedded operating system (Linux). Once the ECG recorder has been connected to the internet network, medical experts can use the internet to access the server of the ECG recorder, monitor ECG signals, and diagnose patients by browsing the dynamic web pages in the embedded web server. The experimental results reveal that the designed system is stable, reliable, and suitable for the use in real-time ECG tele-monitoring for both family and community health care. 展开更多
关键词 dynamic web page electrocardiogram ecg tele-monitoring embeddedweb server
下载PDF
模拟ECG信号在320排CT冠脉成像中的应用价值 被引量:1
17
作者 成满平 蔡晓庆 +4 位作者 牛娟琴 薛巍 陈纲 岳丽娜 杜林芝 《中国CT和MRI杂志》 2023年第11期77-79,共3页
目的探讨模拟ECG信号在320排CT冠脉成像中的应用价值。方法收集和分析我院2015-01-01至2021-10-01期间,使用模拟ECG信号成像的20例患者(A组),与同时期,随机抽取的,常规技术成像的20例患者(B组)的冠脉成像结果,实行对照研究。结果A、B两... 目的探讨模拟ECG信号在320排CT冠脉成像中的应用价值。方法收集和分析我院2015-01-01至2021-10-01期间,使用模拟ECG信号成像的20例患者(A组),与同时期,随机抽取的,常规技术成像的20例患者(B组)的冠脉成像结果,实行对照研究。结果A、B两组图像质量主观法评价,图像质量无显著差异(P=0.3758>0.05);A、B两组图像质量客观法评价,升主动脉根部,右冠状动脉近端,左前降支近端,左旋支近端CT值以及升主动脉根部层面噪声均无明显差异(P>0.05);A、B两组辐射剂量对比有显著差异(P<0.01)。结论模拟ECG信号在320排CT冠脉成像中的应用是可行的,值得推广。 展开更多
关键词 模拟 ecg信号 冠状动脉CT成像 320排CT
下载PDF
An oversampling system for ECG acquisition
18
作者 Yu Zhou 《Journal of Biomedical Science and Engineering》 2009年第7期521-525,共5页
Traditional ECG acquisition system lacks for flexibility. To improve the flexibility of ECG acquisition system and the signal-to-noise ratio of ECG, a new ECG acquisition system was designed based on DAQ card and Labv... Traditional ECG acquisition system lacks for flexibility. To improve the flexibility of ECG acquisition system and the signal-to-noise ratio of ECG, a new ECG acquisition system was designed based on DAQ card and Labview and oversampling was implemented in Labview. And analog signal conditioning circuit was improved on. The result indicated that the system could detect ECG signal accurately with high signal-to-noise ratio and the signal processing methods could be adjusted easily. So the new system can satisfy many kinds of ECG acquisition. It is a flexible experiment platform for exploring new ECG acquisition methods. 展开更多
关键词 ecg ACQUISITION OVERSAMPLING DAQ LABVIEW
下载PDF
美国Philips Medical Systems公司对ECG管理系统进行召回
19
《中国医疗设备》 2014年第10期164-164,共1页
2014年9月17日收到飞利浦(中国)投资有限公司报告,该公司代理的ECG管理系统(注册证号:国食药监械(进)字2013第2700072号)由于在特定情况下系统会出现错误等原因,其生产商美国Philips Medical Systems公司对该产品进行主动召回... 2014年9月17日收到飞利浦(中国)投资有限公司报告,该公司代理的ECG管理系统(注册证号:国食药监械(进)字2013第2700072号)由于在特定情况下系统会出现错误等原因,其生产商美国Philips Medical Systems公司对该产品进行主动召回。该公司称此次召回产品未在中国销售。请各省、自治区、直辖市食品药品监督管理局加强对此类产品的监督管理。 展开更多
关键词 PHILIPS 管理系统 ecg 召回 食品药品监督管理局 美国 飞利浦 注册证
下载PDF
基于深度卷积神经网络的ECG信号分类研究 被引量:2
20
作者 李苗 侯柏成 党豪 《电脑编程技巧与维护》 2023年第1期131-133,共3页
心血管疾病的发病率、死亡率都很高,心电图作为心血管疾病患者必要的辅助检查项目,在心血管疾病诊断上具有重要作用。主要研究利用ECG信号具有大数据特征的优势,通过人工智能方法建立模型对ECG信号进行分析,可以抽象输入信号的深层次特... 心血管疾病的发病率、死亡率都很高,心电图作为心血管疾病患者必要的辅助检查项目,在心血管疾病诊断上具有重要作用。主要研究利用ECG信号具有大数据特征的优势,通过人工智能方法建立模型对ECG信号进行分析,可以抽象输入信号的深层次特征,利用深度神经网络提取信号鲁棒性特征的能力,最终通过深度学习理论技术对心拍、心律失常类信号进行有效的分类与识别,探索了深度学习技术在由心肌缺血引发的心血管类疾病识别中的研究与应用。 展开更多
关键词 ecg信号 卷积神经网络 深度学习
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部