The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve ex...The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix.展开更多
Recently, the development of the Internet of Things (IoT) hasenabled continuous and personal electrocardiogram (ECG) monitoring. In theECG monitoring system, classification plays an important role because it canselect...Recently, the development of the Internet of Things (IoT) hasenabled continuous and personal electrocardiogram (ECG) monitoring. In theECG monitoring system, classification plays an important role because it canselect useful data (i.e., reduce the size of the dataset) and identify abnormaldata that can be used to detect the clinical diagnosis and guide furthertreatment. Since the classification requires computing capability, the ECGdata are usually delivered to the gateway or the server where the classificationis performed based on its computing resource. However, real-time ECG datatransmission continuously consumes battery and network resources, whichare expensive and limited. To mitigate this problem, this paper proposes atiny machine learning (TinyML)-based classification (i.e., TinyCES), wherethe ECG monitoring device performs the classification by itself based onthe machine-learning model, which can reduce the memory and the networkresource usages for the classification. To demonstrate the feasibility, afterwe configure the convolutional neural networks (CNN)-based model usingECG data from the Massachusetts Institute of Technology (MIT)-Beth IsraelHospital (BIH) arrhythmia and the Physikalisch Technische Bundesanstalt(PTB) diagnostic ECG databases, TinyCES is validated using the TinyMLsupportedArduino prototype. The performance results show that TinyCEScan have an approximately 97% detection ratio, which means that it has greatpotential to be a lightweight and resource-efficient ECG monitoring system.展开更多
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos...The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes.展开更多
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an...Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed.展开更多
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar...This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.展开更多
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases...Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and re- ception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, pa- tient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.展开更多
ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring an...ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collects the ECG signal and transmits it to an Android phone. The Android phone detects alarms which come from the ECG devices. When alarms occur, Android phone will capture the ECG images and the details about the alarms, and sends them to the cloud Alarm Server (AS). Once received, AS push the messages to doctors’ phone, so the doctors could see the ECG images and alarm details on their mobile phone. In our system, high resolution ECG pictures are transmitted to doctors’ phone in a user-friendly way, which can help doctors keep track of their patient’s condition easily.展开更多
Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular m...Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram(ECG)signals has the potential to save many lives.In existing studies,several heart disease diagnostic systems are proposed by employing different state-of-the-art methods,however,improving such methods is always an intriguing area of research.Hence,in this research,a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals.The proposed framework extracts both linear and time-series information on the ECG signals and fuses them into a single framework concurrently.The linear characteristics of ECG signals are extracted by convolution layers followed by Gaussian Error Linear Units(GeLu)and time series characteristics of ECG beats are extracted by Vanilla Long Short-Term Memory Networks(LSTM).Following on,the feature reduction of linear information is done with the help of ID Generalized Gated Pooling(GGP).In addition,data misbalancing issues are also addressed with the help of the Synthetic Minority Oversampling Technique(SMOTE).The performance assessment of the proposed model is done over the two publicly available datasets named MIT-BIH arrhythmia database(MITDB)and PTB Diagnostic ECG database(PTBDB).The proposed framework achieves an average accuracy performance of 99.14%along with a 95%recall value.展开更多
This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet n...This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet networks and computers, with the system operating on browser/server(B/S) mode. The ECG recorder was designed by ARM9 (S3C2410X) and embedded operating system (Linux). Once the ECG recorder has been connected to the internet network, medical experts can use the internet to access the server of the ECG recorder, monitor ECG signals, and diagnose patients by browsing the dynamic web pages in the embedded web server. The experimental results reveal that the designed system is stable, reliable, and suitable for the use in real-time ECG tele-monitoring for both family and community health care.展开更多
Traditional ECG acquisition system lacks for flexibility. To improve the flexibility of ECG acquisition system and the signal-to-noise ratio of ECG, a new ECG acquisition system was designed based on DAQ card and Labv...Traditional ECG acquisition system lacks for flexibility. To improve the flexibility of ECG acquisition system and the signal-to-noise ratio of ECG, a new ECG acquisition system was designed based on DAQ card and Labview and oversampling was implemented in Labview. And analog signal conditioning circuit was improved on. The result indicated that the system could detect ECG signal accurately with high signal-to-noise ratio and the signal processing methods could be adjusted easily. So the new system can satisfy many kinds of ECG acquisition. It is a flexible experiment platform for exploring new ECG acquisition methods.展开更多
2014年9月17日收到飞利浦(中国)投资有限公司报告,该公司代理的ECG管理系统(注册证号:国食药监械(进)字2013第2700072号)由于在特定情况下系统会出现错误等原因,其生产商美国Philips Medical Systems公司对该产品进行主动召回...2014年9月17日收到飞利浦(中国)投资有限公司报告,该公司代理的ECG管理系统(注册证号:国食药监械(进)字2013第2700072号)由于在特定情况下系统会出现错误等原因,其生产商美国Philips Medical Systems公司对该产品进行主动召回。该公司称此次召回产品未在中国销售。请各省、自治区、直辖市食品药品监督管理局加强对此类产品的监督管理。展开更多
文摘The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix.
基金supported by National Research Foundation (NRF)of Korea Grant funded by the Korean Government (MSIP) (No.2022R1F1A1063183).
文摘Recently, the development of the Internet of Things (IoT) hasenabled continuous and personal electrocardiogram (ECG) monitoring. In theECG monitoring system, classification plays an important role because it canselect useful data (i.e., reduce the size of the dataset) and identify abnormaldata that can be used to detect the clinical diagnosis and guide furthertreatment. Since the classification requires computing capability, the ECGdata are usually delivered to the gateway or the server where the classificationis performed based on its computing resource. However, real-time ECG datatransmission continuously consumes battery and network resources, whichare expensive and limited. To mitigate this problem, this paper proposes atiny machine learning (TinyML)-based classification (i.e., TinyCES), wherethe ECG monitoring device performs the classification by itself based onthe machine-learning model, which can reduce the memory and the networkresource usages for the classification. To demonstrate the feasibility, afterwe configure the convolutional neural networks (CNN)-based model usingECG data from the Massachusetts Institute of Technology (MIT)-Beth IsraelHospital (BIH) arrhythmia and the Physikalisch Technische Bundesanstalt(PTB) diagnostic ECG databases, TinyCES is validated using the TinyMLsupportedArduino prototype. The performance results show that TinyCEScan have an approximately 97% detection ratio, which means that it has greatpotential to be a lightweight and resource-efficient ECG monitoring system.
文摘The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes.
文摘Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed.
文摘This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.
文摘Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and re- ception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, pa- tient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
文摘ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collects the ECG signal and transmits it to an Android phone. The Android phone detects alarms which come from the ECG devices. When alarms occur, Android phone will capture the ECG images and the details about the alarms, and sends them to the cloud Alarm Server (AS). Once received, AS push the messages to doctors’ phone, so the doctors could see the ECG images and alarm details on their mobile phone. In our system, high resolution ECG pictures are transmitted to doctors’ phone in a user-friendly way, which can help doctors keep track of their patient’s condition easily.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01799)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)and also the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1063134).
文摘Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram(ECG)signals has the potential to save many lives.In existing studies,several heart disease diagnostic systems are proposed by employing different state-of-the-art methods,however,improving such methods is always an intriguing area of research.Hence,in this research,a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals.The proposed framework extracts both linear and time-series information on the ECG signals and fuses them into a single framework concurrently.The linear characteristics of ECG signals are extracted by convolution layers followed by Gaussian Error Linear Units(GeLu)and time series characteristics of ECG beats are extracted by Vanilla Long Short-Term Memory Networks(LSTM).Following on,the feature reduction of linear information is done with the help of ID Generalized Gated Pooling(GGP).In addition,data misbalancing issues are also addressed with the help of the Synthetic Minority Oversampling Technique(SMOTE).The performance assessment of the proposed model is done over the two publicly available datasets named MIT-BIH arrhythmia database(MITDB)and PTB Diagnostic ECG database(PTBDB).The proposed framework achieves an average accuracy performance of 99.14%along with a 95%recall value.
基金Education Committee Foundation of Beijing grant number: KM200610005022+1 种基金Young Backbone Teacher Foundation of Beijing grant number: 102KB00845
文摘This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet networks and computers, with the system operating on browser/server(B/S) mode. The ECG recorder was designed by ARM9 (S3C2410X) and embedded operating system (Linux). Once the ECG recorder has been connected to the internet network, medical experts can use the internet to access the server of the ECG recorder, monitor ECG signals, and diagnose patients by browsing the dynamic web pages in the embedded web server. The experimental results reveal that the designed system is stable, reliable, and suitable for the use in real-time ECG tele-monitoring for both family and community health care.
文摘Traditional ECG acquisition system lacks for flexibility. To improve the flexibility of ECG acquisition system and the signal-to-noise ratio of ECG, a new ECG acquisition system was designed based on DAQ card and Labview and oversampling was implemented in Labview. And analog signal conditioning circuit was improved on. The result indicated that the system could detect ECG signal accurately with high signal-to-noise ratio and the signal processing methods could be adjusted easily. So the new system can satisfy many kinds of ECG acquisition. It is a flexible experiment platform for exploring new ECG acquisition methods.
文摘2014年9月17日收到飞利浦(中国)投资有限公司报告,该公司代理的ECG管理系统(注册证号:国食药监械(进)字2013第2700072号)由于在特定情况下系统会出现错误等原因,其生产商美国Philips Medical Systems公司对该产品进行主动召回。该公司称此次召回产品未在中国销售。请各省、自治区、直辖市食品药品监督管理局加强对此类产品的监督管理。