Internet communication protocols define the behavior rules of network components when they communicate with each other.With the continuous development of network technologies,many private or unknown network protocols ...Internet communication protocols define the behavior rules of network components when they communicate with each other.With the continuous development of network technologies,many private or unknown network protocols are emerging in endlessly various network environments.Herein,relevant protocol specifications become difficult or unavailable to translate in many situations such as network security management and intrusion detection.Although protocol reverse engineering is being investigated in recent years to perform reverse analysis on the specifications of unknown protocols,most existing methods have proven to be time-consuming with limited efficiency,especially when applied on unknown protocol state machines.This paper proposes a state merging algorithm based on EDSM(Evidence-Driven State Merging)to infer the transition rules of unknown protocols in form of state machines with high efficiency.Compared with another classical state machine inferring method based on Exbar algorithm,the experiment results demonstrate that our proposed method could run faster,especially when dealing with massive training data sets.In addition,this method can also make the state machines have higher similarities with the reference state machines constructed from public specifications.展开更多
Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is appl...Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.展开更多
基金This work is supported by the National Natural Science Foundation of China(Grant Number:61471141,61361166006,61301099)Basic Research Project of Shenzhen,China(Grant Number:JCYJ20150513151706561)National Defense Basic Scientific Research Program of China(Grant Number:JCKY2018603B006).
文摘Internet communication protocols define the behavior rules of network components when they communicate with each other.With the continuous development of network technologies,many private or unknown network protocols are emerging in endlessly various network environments.Herein,relevant protocol specifications become difficult or unavailable to translate in many situations such as network security management and intrusion detection.Although protocol reverse engineering is being investigated in recent years to perform reverse analysis on the specifications of unknown protocols,most existing methods have proven to be time-consuming with limited efficiency,especially when applied on unknown protocol state machines.This paper proposes a state merging algorithm based on EDSM(Evidence-Driven State Merging)to infer the transition rules of unknown protocols in form of state machines with high efficiency.Compared with another classical state machine inferring method based on Exbar algorithm,the experiment results demonstrate that our proposed method could run faster,especially when dealing with massive training data sets.In addition,this method can also make the state machines have higher similarities with the reference state machines constructed from public specifications.
文摘Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.