The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with r...The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.展开更多
Barium metaborate (BaB 2O 4) exists in two forms the high temperature for m α phase and the low temperature form β phase,with the phase transition poi nt at around 925℃.The low temperature phase (β BBO) is an exce...Barium metaborate (BaB 2O 4) exists in two forms the high temperature for m α phase and the low temperature form β phase,with the phase transition poi nt at around 925℃.The low temperature phase (β BBO) is an excellent NLO cryst al for UV region,while the high temperature one (α BBO) is known as a good bir efringent material.α BBO crystal possesses better transparency in the ultravio let region compared with commonly used YVO 4 and CaCO 3 crystals.However,due t o phase transition problem,it is difficult to grow single α BBO crystals by D CZ method,which restricts its wider application.α BBO crystal usually cracks upon cooling resulted from phase transition to β phase.Therefore,it is difficult to grow β BBO single crystals directly from pure BaB 2O 4 mel t;however,to grow single crystals of α BBO is not easy,either. Our recent experiments showed that one could avoid cracking of α BBO cryst als by Sr 2+ doping.This minute amount of Sr 2+ plays the role of structure stabilizer,which inhibits structural reconstruction. In this way,Sr 2+ d op ed BBO single crystals do not subject to phase transition from 925℃ down to roo m temperature. We have mow successfully grown out α BBO single crystals 30mm in diameter by D CZ method from Sr x Ba 1- x BO 4 melt with Sr concentration 0.3 0 .5%.The ratation rate is 10 15r/min,pulling speed is 1 2mm/h.Preliminary tests revealed that its structure and physic chemical properties were almost identic al to those grown from pure melts.These Sr 2+ doped α BBO crystals are no w being widely used in optical isolators.展开更多
Growth and morphology of neodymium or ytterbium doped calcium gadolinium yttrium oxoborate (Re∶Ca 4Gd x Y 1- x O(BO 3) 3(Re∶GdYCOB)Re =Nd,Yb; x =0-1)were systematically studied. Polycrystalline materials used for Re...Growth and morphology of neodymium or ytterbium doped calcium gadolinium yttrium oxoborate (Re∶Ca 4Gd x Y 1- x O(BO 3) 3(Re∶GdYCOB)Re =Nd,Yb; x =0-1)were systematically studied. Polycrystalline materials used for Re∶GdYCOB single crystals growth were synthesized by multistage solid phase reaction method.Re∶GdYCOB single crystals were grown by Czochralski technique.The pulling rates are 0.5-2mm/h and the rotation rates are 10-30r/min.Usually 65-75% polycrystalline materials can be transformed into good quality single crystals under our growth conditions. The structures of some as grown Re∶GdYCOB single crystals were measured by using a four circle diffractometer.The results measured show that the space group of the crystals is C 3 s Cm.The determined lattice constants of 8 at% Nd doped Ca 4YO(BO 3) 3 single crystal are a =0.8076nm, b =1.6020nm, c =0.3527nm , β =101.23°.展开更多
基金the National Natural Science Foundation of China (No. 51602126)the National Key Research and Development Plan of China (No. 2016YFB0303505)+1 种基金China and University of Jinan Postdoctoral Science Foundation (No. 2017M622118 and XBH1716)the 111 Project of International Corporation on Advanced Cement-based Materials (D17001).
文摘The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.
文摘Barium metaborate (BaB 2O 4) exists in two forms the high temperature for m α phase and the low temperature form β phase,with the phase transition poi nt at around 925℃.The low temperature phase (β BBO) is an excellent NLO cryst al for UV region,while the high temperature one (α BBO) is known as a good bir efringent material.α BBO crystal possesses better transparency in the ultravio let region compared with commonly used YVO 4 and CaCO 3 crystals.However,due t o phase transition problem,it is difficult to grow single α BBO crystals by D CZ method,which restricts its wider application.α BBO crystal usually cracks upon cooling resulted from phase transition to β phase.Therefore,it is difficult to grow β BBO single crystals directly from pure BaB 2O 4 mel t;however,to grow single crystals of α BBO is not easy,either. Our recent experiments showed that one could avoid cracking of α BBO cryst als by Sr 2+ doping.This minute amount of Sr 2+ plays the role of structure stabilizer,which inhibits structural reconstruction. In this way,Sr 2+ d op ed BBO single crystals do not subject to phase transition from 925℃ down to roo m temperature. We have mow successfully grown out α BBO single crystals 30mm in diameter by D CZ method from Sr x Ba 1- x BO 4 melt with Sr concentration 0.3 0 .5%.The ratation rate is 10 15r/min,pulling speed is 1 2mm/h.Preliminary tests revealed that its structure and physic chemical properties were almost identic al to those grown from pure melts.These Sr 2+ doped α BBO crystals are no w being widely used in optical isolators.
文摘Growth and morphology of neodymium or ytterbium doped calcium gadolinium yttrium oxoborate (Re∶Ca 4Gd x Y 1- x O(BO 3) 3(Re∶GdYCOB)Re =Nd,Yb; x =0-1)were systematically studied. Polycrystalline materials used for Re∶GdYCOB single crystals growth were synthesized by multistage solid phase reaction method.Re∶GdYCOB single crystals were grown by Czochralski technique.The pulling rates are 0.5-2mm/h and the rotation rates are 10-30r/min.Usually 65-75% polycrystalline materials can be transformed into good quality single crystals under our growth conditions. The structures of some as grown Re∶GdYCOB single crystals were measured by using a four circle diffractometer.The results measured show that the space group of the crystals is C 3 s Cm.The determined lattice constants of 8 at% Nd doped Ca 4YO(BO 3) 3 single crystal are a =0.8076nm, b =1.6020nm, c =0.3527nm , β =101.23°.