In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expans...In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.展开更多
The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many ...The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many types of doubly periodic traveling wave solutions are obtained. Under limiting conditions these solutions are reduced into solitary wave solutions.展开更多
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a co...In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.展开更多
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct m...The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.展开更多
In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik...In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.展开更多
The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account t...The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.展开更多
One- and two-periodic wave solutions for (3+l)-dimensional Boussinesq equation are presented by means of Hirota's bilinear method and the Riemann theta function. The soliton solution can be obtained from the perio...One- and two-periodic wave solutions for (3+l)-dimensional Boussinesq equation are presented by means of Hirota's bilinear method and the Riemann theta function. The soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.展开更多
In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the ...In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.展开更多
Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equ...Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.展开更多
Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling w...Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.展开更多
In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in...In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained.展开更多
The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations shave some of the nice properties of soliton equations. From the el...The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations shave some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation.展开更多
In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutio...In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.展开更多
In this paper,we investigate nonlinear the perturbed nonlinear Schrdinger's equation (NLSE) with Kerr law nonlinearity given in [Z.Y.Zhang,et al.,Appl.Math.Comput.216 (2010) 3064] and obtain exact traveling soluti...In this paper,we investigate nonlinear the perturbed nonlinear Schrdinger's equation (NLSE) with Kerr law nonlinearity given in [Z.Y.Zhang,et al.,Appl.Math.Comput.216 (2010) 3064] and obtain exact traveling solutions by using infinite series method (ISM),Cosine-function method (CFM).We show that the solutions by using ISM and CFM are equal.Finally,we obtain abundant exact traveling wave solutions of NLSE by using Jacobi elliptic function expansion method (JEFEM).展开更多
文摘In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No.10272071)
文摘The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many types of doubly periodic traveling wave solutions are obtained. Under limiting conditions these solutions are reduced into solitary wave solutions.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.
文摘In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.
文摘The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.
基金The Scientific Research Foundation (QKJA2010011) of Nanjing Institute of Technology
文摘In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.
基金supported by the National Natural Science Foundation of China(Nos.10772129 and 10702047).
文摘The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.
文摘One- and two-periodic wave solutions for (3+l)-dimensional Boussinesq equation are presented by means of Hirota's bilinear method and the Riemann theta function. The soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Natural Science Foundation of Zhejiang Lishui University of China (Grant Nos KZ05004 and KY06024).
文摘In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.
基金Supported by the Natural Science Foundation of Zhejiang Province (1 0 2 0 37)
文摘Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.
基金Project supported by the National Natural Science Foundation of China (No. 10772129)
文摘Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.
基金Supported by National Natural Science Foundation of China under Grant No. 90511009
文摘In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575087 and 10875106)
文摘The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations shave some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation.
基金The Scientific Research Foundation (KXJ08047) of NanJing Institute of Technology
文摘In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.
基金Supported by the Research Foundation of Education Bureau of Hunan Province under Grant No.11C0628Foundation of Hunan Institute of Science and Technology under Grant No.2011Y49
文摘In this paper,we investigate nonlinear the perturbed nonlinear Schrdinger's equation (NLSE) with Kerr law nonlinearity given in [Z.Y.Zhang,et al.,Appl.Math.Comput.216 (2010) 3064] and obtain exact traveling solutions by using infinite series method (ISM),Cosine-function method (CFM).We show that the solutions by using ISM and CFM are equal.Finally,we obtain abundant exact traveling wave solutions of NLSE by using Jacobi elliptic function expansion method (JEFEM).