新能源发电并网及大量非线性、冲击性负荷的应用造成的电压波动与闪变已成为不可忽视的电能质量问题。为实现非稳态电压闪变参数的准确提取,提出一种基于改进集合局部均值分解(ensemble local mean decomposition,ELMD)和sinc插值校正...新能源发电并网及大量非线性、冲击性负荷的应用造成的电压波动与闪变已成为不可忽视的电能质量问题。为实现非稳态电压闪变参数的准确提取,提出一种基于改进集合局部均值分解(ensemble local mean decomposition,ELMD)和sinc插值校正的闪变参数分析方法,通过sinc插值法替代局部均值分解法中移动平均插值,并利用噪声的统计特性构建改进集合局部均值分解方法,基于改进ELMD将非稳态电压闪变信号分解成一系列的本征模函数(intrinsic mode function,IMF)分量,然后对各分量进行Hilbert变换获得非稳态电压闪变包络信号的瞬时幅值和瞬时频率,最后针对局部均值分解(local mean decomposition,LMD)测量大于12 Hz闪变分量幅值误差较大的局限性,构建基于sinc插值的幅值误差校正模型,据此实现非稳态电压闪变参数的完整检测与分析。通过仿真和实验证明所提出的改进ELMD和sinc插值校正闪变检测相比传统基于LMD的闪变检测方法具有更高的准确度,受电网基波频率波动的影响很小,抗干扰性强,能有效实现非稳态电压闪变包络参数准确检测。展开更多
针对滚动轴承非平稳性的振动信号,提出了基于总体局域均值分解(Ensemble Local Mean Decomposition,ELMD)及核密度估计的滚动轴承故障诊断方法。首先,对振动信号进行ELMD分解,获得一系列乘积函数(Production Function,PF),计算包含主要...针对滚动轴承非平稳性的振动信号,提出了基于总体局域均值分解(Ensemble Local Mean Decomposition,ELMD)及核密度估计的滚动轴承故障诊断方法。首先,对振动信号进行ELMD分解,获得一系列乘积函数(Production Function,PF),计算包含主要故障的PF分量的有效值、峭度、偏度系数,将其组合成特征向量;根据核密度估计的特性提出基于核密度估计的分类器,将特征向量输入分类器进行训练与测试,从而识别滚动轴承的工作状态和故障类型。实验结果表明,该方法能够有效的对滚动轴承故障进行识别,且效果较LMD方法好。展开更多
针对局部均值分解(local mean decomposition,LMD)实现过程中存在的模式混淆现象,提出了一种基于总体局部均值分解(ensemble local mean decomposition,ELMD)与最小二乘支持向量机(least squares support vector machine,LS-SVM)相结合...针对局部均值分解(local mean decomposition,LMD)实现过程中存在的模式混淆现象,提出了一种基于总体局部均值分解(ensemble local mean decomposition,ELMD)与最小二乘支持向量机(least squares support vector machine,LS-SVM)相结合的滚动轴承故障诊断方法。该方法先对滚动轴承振动信号进行ELMD分解,并得到若干乘积函数(product function,PF),然后选取包含主要故障信息的PF分量,提取其峭度系数与能量特征参数以构造故障特征向量,并作为LS-SVM的输入来识别滚动轴承的工作状态和故障类型。通过对滚动轴承正常状态,内圈故障和外圈故障的分析结果表明,基于ELMD与LS-SVM的诊断方法可以准确有效识别滚动轴承的工作状态和故障类型。展开更多
针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algo...针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algorithm,AFSA)寻找支持向量机(Support vector machine,SVM)最优核函数系数组合的行星齿轮箱关键部件的状态辨识方法。首先,利用ELMD分解经形态平均滤波的行星齿轮箱关键部件的振动信号来获取若干窄带乘积函数(Product function,PF)。然后,计算其能量熵来构建高维特征向量集。最后,将其作为输入,通过训练学习建立AFSA优化SVM的行星齿轮箱关键部件状态辨识模型。实验结果表明,所提方法能凸显原信号中的有效故障成份,提高了模型的状态辨识精度。展开更多
提出基于ELMD熵特征融合与PSO-SVM的齿轮故障诊断方法。该方法首先对原始信号进行总体局部均值分解(Ensemble local mean decomposition,ELMD),得到若干乘积函数(PF);其次,对ELMD分解得到的前5个PF分量进行求取能量熵和近似熵,并利用KPC...提出基于ELMD熵特征融合与PSO-SVM的齿轮故障诊断方法。该方法首先对原始信号进行总体局部均值分解(Ensemble local mean decomposition,ELMD),得到若干乘积函数(PF);其次,对ELMD分解得到的前5个PF分量进行求取能量熵和近似熵,并利用KPCA对其进行特征融合;然后,选取部分融合特征作为训练样本,其余作为测试样本;最后,利用PSO优化的支持向量机对融合特征样本进行训练与测试。实验中,将单特征和融合特征分别进行SVM和PSO-SVM识别精度的对比。实验结果证明,所提方法可有效地应用在齿轮故障诊断中。展开更多
针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承...针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承故障诊断方法。首先对轴承振动信号进行噪声参数最优ELMD分解并得到一系列窄带乘积函数(Product Function,PF),然后计算各PF分量能量以构造能量特征向量,最后将高维能量特征向量作为最小二乘支持向量机的输入来识别轴承故障类型。通过对轴承故障振动信号分析,结果表明噪声参数最优ELMD方法能有效地抑制模态混叠,与LS-SVM结合可以准确地识别轴承的工作状态和故障类型。展开更多
机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了...机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了基于集成局部均值分解(Ensemble local means decomposition,ELMD)与改进的稀疏多尺度支持向量机(Sparse multiscale support vector machine,SMSVM)的机械故障诊断方法。该方法首先使用自适应非线性、非平稳信号处理方法 ELMD把多模态调制故障信号分解成为多个单模态解调信号,有效地增强了故障特征。把压缩感知和多尺度分析技术融合于故障模式分类中,提出改进SMSVM旋转机械故障识别方法,提高多类机械微弱故障数据模式识别性能。该方法融合稀疏表示、多尺度分析和SVM的优点,无需求解复杂的优化问题,易于推广至更多尺度SVM,具有计算量少、泛化性与鲁棒性好、物理意义明显等优点。人工数据和实验设备数据验证了本文算法的优越性。展开更多
针对在强噪声环境下,滚动轴承故障特征信息微弱、特征频率难以识别的问题,提出基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最大相关峭度卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)的轴承故障诊断方法...针对在强噪声环境下,滚动轴承故障特征信息微弱、特征频率难以识别的问题,提出基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最大相关峭度卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)的轴承故障诊断方法,用于处理轴承故障振动信号。首先,使用ELMD将原始数据分解为1组乘积函数(PF);然后,利用MCKD对每一个PF分量进行降噪处理;最后,对各降噪的PF分量求取包络谱,从而在包络谱中寻找轴承的故障特征频率。为了验证ELMD-MCKD在检测故障中的有效性,进行了一系列轴承故障模拟实验分析。结果表明,提出的ELMD-MCKD方法提高了轴承故障识别的准确性,可用于实际应用中的故障诊断。展开更多
针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得...针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得到若干的乘积函数(Product Function,PF)分量和一个残差。然后,通过PF分量和原始轴承故障信号的相关性分析,选取与原始信号相关性最大的PF分量,并求取PF分量的模糊熵值作为特征向量。最终,通过GK聚类对所得的特征向量进行识别分类。通过对滚动轴承正常状态、内圈故障、滚动体故障和外圈故障的轴承四种状态分析表明,基于ELMD模糊熵和GK聚类的方法能够准确有效的对轴承故障状态进行分类识别。展开更多
针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信...针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信号进行ELMD分解并得到一系列窄带乘积函数(product function,PF),然后,计算各PF分量排列熵以构造高维特征向量,最后将高维特征向量作为多故障分类器的输入来识别轴承故障类型。实验结果表明ELMD方法可以有效地抑制模态混叠;PF分量的排列熵分布可以反应轴承不同工作状态下的信号特征;基于ELMD与排列熵的智能诊断方法可以准确地识别轴承的工作状态和故障类型。展开更多
语音信号是一种非稳态的随机信号,而传统的时频分析法缺乏对这类信号进行最稀疏表示的能力,为此提出了一种完备的局部均值分解(Ensemble Local Mean Decomposition,ELMD)联合粒子群优化小波阈值语音消噪分析法:在对原始信号LMD(局部均...语音信号是一种非稳态的随机信号,而传统的时频分析法缺乏对这类信号进行最稀疏表示的能力,为此提出了一种完备的局部均值分解(Ensemble Local Mean Decomposition,ELMD)联合粒子群优化小波阈值语音消噪分析法:在对原始信号LMD(局部均值分解,Local Mean Decomposition)分解基础上加入高斯白噪声辅助分析的自适应分析法,以减轻分解后的产生模态混叠现象;对于分解后的分量中残留的噪声使用粒子群优化算法获得最优小波阈值滤除。对实际采集语音信号进行Matlab仿真的处理分析结果显示,该算法在抑制语音中的背景噪声有着良好的效果,且有效降低了对语音有效信息的损伤。展开更多
文摘新能源发电并网及大量非线性、冲击性负荷的应用造成的电压波动与闪变已成为不可忽视的电能质量问题。为实现非稳态电压闪变参数的准确提取,提出一种基于改进集合局部均值分解(ensemble local mean decomposition,ELMD)和sinc插值校正的闪变参数分析方法,通过sinc插值法替代局部均值分解法中移动平均插值,并利用噪声的统计特性构建改进集合局部均值分解方法,基于改进ELMD将非稳态电压闪变信号分解成一系列的本征模函数(intrinsic mode function,IMF)分量,然后对各分量进行Hilbert变换获得非稳态电压闪变包络信号的瞬时幅值和瞬时频率,最后针对局部均值分解(local mean decomposition,LMD)测量大于12 Hz闪变分量幅值误差较大的局限性,构建基于sinc插值的幅值误差校正模型,据此实现非稳态电压闪变参数的完整检测与分析。通过仿真和实验证明所提出的改进ELMD和sinc插值校正闪变检测相比传统基于LMD的闪变检测方法具有更高的准确度,受电网基波频率波动的影响很小,抗干扰性强,能有效实现非稳态电压闪变包络参数准确检测。
文摘针对滚动轴承非平稳性的振动信号,提出了基于总体局域均值分解(Ensemble Local Mean Decomposition,ELMD)及核密度估计的滚动轴承故障诊断方法。首先,对振动信号进行ELMD分解,获得一系列乘积函数(Production Function,PF),计算包含主要故障的PF分量的有效值、峭度、偏度系数,将其组合成特征向量;根据核密度估计的特性提出基于核密度估计的分类器,将特征向量输入分类器进行训练与测试,从而识别滚动轴承的工作状态和故障类型。实验结果表明,该方法能够有效的对滚动轴承故障进行识别,且效果较LMD方法好。
文摘针对局部均值分解(local mean decomposition,LMD)实现过程中存在的模式混淆现象,提出了一种基于总体局部均值分解(ensemble local mean decomposition,ELMD)与最小二乘支持向量机(least squares support vector machine,LS-SVM)相结合的滚动轴承故障诊断方法。该方法先对滚动轴承振动信号进行ELMD分解,并得到若干乘积函数(product function,PF),然后选取包含主要故障信息的PF分量,提取其峭度系数与能量特征参数以构造故障特征向量,并作为LS-SVM的输入来识别滚动轴承的工作状态和故障类型。通过对滚动轴承正常状态,内圈故障和外圈故障的分析结果表明,基于ELMD与LS-SVM的诊断方法可以准确有效识别滚动轴承的工作状态和故障类型。
文摘针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algorithm,AFSA)寻找支持向量机(Support vector machine,SVM)最优核函数系数组合的行星齿轮箱关键部件的状态辨识方法。首先,利用ELMD分解经形态平均滤波的行星齿轮箱关键部件的振动信号来获取若干窄带乘积函数(Product function,PF)。然后,计算其能量熵来构建高维特征向量集。最后,将其作为输入,通过训练学习建立AFSA优化SVM的行星齿轮箱关键部件状态辨识模型。实验结果表明,所提方法能凸显原信号中的有效故障成份,提高了模型的状态辨识精度。
文摘提出基于ELMD熵特征融合与PSO-SVM的齿轮故障诊断方法。该方法首先对原始信号进行总体局部均值分解(Ensemble local mean decomposition,ELMD),得到若干乘积函数(PF);其次,对ELMD分解得到的前5个PF分量进行求取能量熵和近似熵,并利用KPCA对其进行特征融合;然后,选取部分融合特征作为训练样本,其余作为测试样本;最后,利用PSO优化的支持向量机对融合特征样本进行训练与测试。实验中,将单特征和融合特征分别进行SVM和PSO-SVM识别精度的对比。实验结果证明,所提方法可有效地应用在齿轮故障诊断中。
文摘针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承故障诊断方法。首先对轴承振动信号进行噪声参数最优ELMD分解并得到一系列窄带乘积函数(Product Function,PF),然后计算各PF分量能量以构造能量特征向量,最后将高维能量特征向量作为最小二乘支持向量机的输入来识别轴承故障类型。通过对轴承故障振动信号分析,结果表明噪声参数最优ELMD方法能有效地抑制模态混叠,与LS-SVM结合可以准确地识别轴承的工作状态和故障类型。
文摘机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了基于集成局部均值分解(Ensemble local means decomposition,ELMD)与改进的稀疏多尺度支持向量机(Sparse multiscale support vector machine,SMSVM)的机械故障诊断方法。该方法首先使用自适应非线性、非平稳信号处理方法 ELMD把多模态调制故障信号分解成为多个单模态解调信号,有效地增强了故障特征。把压缩感知和多尺度分析技术融合于故障模式分类中,提出改进SMSVM旋转机械故障识别方法,提高多类机械微弱故障数据模式识别性能。该方法融合稀疏表示、多尺度分析和SVM的优点,无需求解复杂的优化问题,易于推广至更多尺度SVM,具有计算量少、泛化性与鲁棒性好、物理意义明显等优点。人工数据和实验设备数据验证了本文算法的优越性。
文摘针对在强噪声环境下,滚动轴承故障特征信息微弱、特征频率难以识别的问题,提出基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最大相关峭度卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)的轴承故障诊断方法,用于处理轴承故障振动信号。首先,使用ELMD将原始数据分解为1组乘积函数(PF);然后,利用MCKD对每一个PF分量进行降噪处理;最后,对各降噪的PF分量求取包络谱,从而在包络谱中寻找轴承的故障特征频率。为了验证ELMD-MCKD在检测故障中的有效性,进行了一系列轴承故障模拟实验分析。结果表明,提出的ELMD-MCKD方法提高了轴承故障识别的准确性,可用于实际应用中的故障诊断。
文摘机械设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal Parameter Maxim Correlated Kurtosis Deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean Decomposition, ELMD)相结合的轴承复合故障诊断方法;首先利用排列熵值、包络谱稀疏度分别筛选MCKD中的最优滤波器长度L与冲击周期T,提取滚动轴承主故障;然后通过ELMD方法将非平稳信号分解为若干个分量,筛去主故障信息后,再次利用最优参数MCKD进行次故障诊断。通过对轴承信号的分析,验证了该方法能有效分离复合故障信号,具有一定的实用性。
文摘针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得到若干的乘积函数(Product Function,PF)分量和一个残差。然后,通过PF分量和原始轴承故障信号的相关性分析,选取与原始信号相关性最大的PF分量,并求取PF分量的模糊熵值作为特征向量。最终,通过GK聚类对所得的特征向量进行识别分类。通过对滚动轴承正常状态、内圈故障、滚动体故障和外圈故障的轴承四种状态分析表明,基于ELMD模糊熵和GK聚类的方法能够准确有效的对轴承故障状态进行分类识别。
文摘针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信号进行ELMD分解并得到一系列窄带乘积函数(product function,PF),然后,计算各PF分量排列熵以构造高维特征向量,最后将高维特征向量作为多故障分类器的输入来识别轴承故障类型。实验结果表明ELMD方法可以有效地抑制模态混叠;PF分量的排列熵分布可以反应轴承不同工作状态下的信号特征;基于ELMD与排列熵的智能诊断方法可以准确地识别轴承的工作状态和故障类型。
文摘语音信号是一种非稳态的随机信号,而传统的时频分析法缺乏对这类信号进行最稀疏表示的能力,为此提出了一种完备的局部均值分解(Ensemble Local Mean Decomposition,ELMD)联合粒子群优化小波阈值语音消噪分析法:在对原始信号LMD(局部均值分解,Local Mean Decomposition)分解基础上加入高斯白噪声辅助分析的自适应分析法,以减轻分解后的产生模态混叠现象;对于分解后的分量中残留的噪声使用粒子群优化算法获得最优小波阈值滤除。对实际采集语音信号进行Matlab仿真的处理分析结果显示,该算法在抑制语音中的背景噪声有着良好的效果,且有效降低了对语音有效信息的损伤。