Nystrm method is a new method for solving electromagnetic scattering problems. This paper gives the detailed description on high-order Nystrm method used for the electric field integral equation of electromagnetic sca...Nystrm method is a new method for solving electromagnetic scattering problems. This paper gives the detailed description on high-order Nystrm method used for the electric field integral equation of electromagnetic scattering problems. The numerical solutions of two examples are correct compared with Method Of Moment(MOM).展开更多
According to the equivalence principles, high frequency approximation and boundary conditions, a method has been developed to deal with the EM scattering by a rectangular conducting flat plate coated with uniaxial ani...According to the equivalence principles, high frequency approximation and boundary conditions, a method has been developed to deal with the EM scattering by a rectangular conducting flat plate coated with uniaxial anisotropic radar absorbing material (RAM). The simple and effective method is available to the system of RCS prediction in which the large complex targets modeled by facets and wedges. Numerical results show some properties of EM scattering by conducting plate coated with thin uniaxial anisotropic RAM.展开更多
In this paper, Laplace transform method is used to solve the problem of wave scattering from the rough surface. The rough surface is described by y=ζ (x, z) . First, we make Laplace transform to y variable, th...In this paper, Laplace transform method is used to solve the problem of wave scattering from the rough surface. The rough surface is described by y=ζ (x, z) . First, we make Laplace transform to y variable, then do the Fourier transform to x and z variables. In the k space, we can obtain the solution of the problem of wave scattering by simple algebraic operation. Finally, the Laplace inverse transform is performed by complex variable method and Fourier inverse transform by stationary phase method.展开更多
As a marked extension of the traditional MoM-PO (method of moment-physical optics) hybrid method, a new hybridization of PO, SBR, and MoM (MoM-SBR/PO) is presented to calculate the multireflection contribution in ...As a marked extension of the traditional MoM-PO (method of moment-physical optics) hybrid method, a new hybridization of PO, SBR, and MoM (MoM-SBR/PO) is presented to calculate the multireflection contribution in the PO region efficiently by introducing the method of SBR based on RDN notion, which avoids the time-consuming iterative procedure and the choice of proper Green's function. As compared with the traditional MoM-PO hybrid method, the calculation efficiency of the proposed method is greatly improved, and its validity is verified by numerical results.展开更多
A breaking wave can exert a great influence on the electromagnetic(EM) scattering result from sea surfaces. In this paper, the process of small-scale wave breaking is simulated by the commercial computational fluid ...A breaking wave can exert a great influence on the electromagnetic(EM) scattering result from sea surfaces. In this paper, the process of small-scale wave breaking is simulated by the commercial computational fluid dynamics(CFD)software FLUENT, and the backscattering radar cross section(RCS) of the turbulence structure after breaking is calculated with the method of moments. The scattering results can reflect the turbulent intensities of the wave profiles and can indicate high polarization ratios at moderate incident angles, which should be attributed to the incoherent backscatter from surface disturbance of turbulence structure. Compared with the wave profile before breaking, the turbulence structure has no obvious geometrical characteristic of a plunging breaker, and no sea spikes are present at large incident angles either.In summary, the study of EM scattering from turbulence structure can provide a basis to explain the anomalies of EM scattering from sea surfaces and help us understand the scattering mechanism about the breaking wave more completely.展开更多
A RCS prediction system named SCTE (Scattering from Complex Target and Environment) for calculating high-frequency electromagnetic scattering from complex target within complex environment is presented. The scattering...A RCS prediction system named SCTE (Scattering from Complex Target and Environment) for calculating high-frequency electromagnetic scattering from complex target within complex environment is presented. The scattering body is described by Computer-Aided-Design (CAD) representations in which the complex body is modeled as NURBS (Non-Uniform Rational B-spline) surfaces. The complex environment (rough surface of sea or ground) is also carefully considered by using fractal function. Scattering fields are calculated by using physical optics and the equivalent currents methods. There is a good agreement between the present results and that from measurements which demonstrates the accuracy of this system.展开更多
The solution of scattering problem of buried complex bodies needs to not only consider the scattering from the complex bodies, but also apply the boundary conditions in two different types of coordinate systems. This ...The solution of scattering problem of buried complex bodies needs to not only consider the scattering from the complex bodies, but also apply the boundary conditions in two different types of coordinate systems. This paper applies the conversion technique of vector wave functions combined with the three-dimensional unimoment method to effectively solve this type of complex electromagnetic problem. Using the conversion relations between the cylindrical and spherical vector wave functions, two types of boundary-value problems are conveniently jointed. Both the vector wave function expansion and the multipole expansion belong to eigen function expansion methods and have the same convergence rate. But the former is more rigorous in theory and needs to calculate only two types of eigen components while the latter needs to calculate four types.展开更多
An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the for...An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).展开更多
This paper presents a new method for computation of the monostatic radar cross section (RCS) of electrically large conducting objects. Compared with the traditional Z-buffer technique, the improved one can record not ...This paper presents a new method for computation of the monostatic radar cross section (RCS) of electrically large conducting objects. Compared with the traditional Z-buffer technique, the improved one can record not only the illuminated surface of the body, but also the information about the shadowed part. So multi-scattering and RCS of cavity can be calculated. The second advantage of it is using dual representation, of the target's facet surface, in which the illuminated part is treated as bicubic patches for RCS calculation, and is simplified to flat facet when ray tracing is done. Excellent agreement with the experiment has been obtained.展开更多
As a “global” numerical optimization method, genetic algorithm is briefly introduced. It is applied to optimize the absorbing coating to reduce EM scattering, leading to satisfactory results.
Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane inc...Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane incident wave assumption, the narrowband, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radarseeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the usefulness of the developed formulations.展开更多
Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can ...Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cells. For this purpose, one can find two principal approaches: via electromagnetic (EM) models and empirical (EP) models. In both approaches, the Geophysical Model Functions (GMFs) are used to describe the relation of radar scattering, wind speed, and the geometry of observations. By knowing radar scattering and geometric parameters, it is possible to invert the GMFs to retrieve wind speed. It is very interesting to compare wind speed estimated by the EM models, general descriptions of radar scattering from sea surface, to the one estimated by the EP models, specific descriptions for the inverse problem. Based on the comparisons, some ideas are proposed to improve the performance of the EM models for wind speed retrieval.展开更多
基金Supported by the National Natural Science Fbundation of China(No.60371003)
文摘Nystrm method is a new method for solving electromagnetic scattering problems. This paper gives the detailed description on high-order Nystrm method used for the electric field integral equation of electromagnetic scattering problems. The numerical solutions of two examples are correct compared with Method Of Moment(MOM).
文摘According to the equivalence principles, high frequency approximation and boundary conditions, a method has been developed to deal with the EM scattering by a rectangular conducting flat plate coated with uniaxial anisotropic radar absorbing material (RAM). The simple and effective method is available to the system of RCS prediction in which the large complex targets modeled by facets and wedges. Numerical results show some properties of EM scattering by conducting plate coated with thin uniaxial anisotropic RAM.
文摘In this paper, Laplace transform method is used to solve the problem of wave scattering from the rough surface. The rough surface is described by y=ζ (x, z) . First, we make Laplace transform to y variable, then do the Fourier transform to x and z variables. In the k space, we can obtain the solution of the problem of wave scattering by simple algebraic operation. Finally, the Laplace inverse transform is performed by complex variable method and Fourier inverse transform by stationary phase method.
文摘As a marked extension of the traditional MoM-PO (method of moment-physical optics) hybrid method, a new hybridization of PO, SBR, and MoM (MoM-SBR/PO) is presented to calculate the multireflection contribution in the PO region efficiently by introducing the method of SBR based on RDN notion, which avoids the time-consuming iterative procedure and the choice of proper Green's function. As compared with the traditional MoM-PO hybrid method, the calculation efficiency of the proposed method is greatly improved, and its validity is verified by numerical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372004 and 41306188)the Fundamental Research Funds for the Central Universities,China(Grant No.K 5051207015)the Foundation of the Science and Technology on Electromagnetic Scattering Laboratory,China(Grant No.HX0113071414)
文摘A breaking wave can exert a great influence on the electromagnetic(EM) scattering result from sea surfaces. In this paper, the process of small-scale wave breaking is simulated by the commercial computational fluid dynamics(CFD)software FLUENT, and the backscattering radar cross section(RCS) of the turbulence structure after breaking is calculated with the method of moments. The scattering results can reflect the turbulent intensities of the wave profiles and can indicate high polarization ratios at moderate incident angles, which should be attributed to the incoherent backscatter from surface disturbance of turbulence structure. Compared with the wave profile before breaking, the turbulence structure has no obvious geometrical characteristic of a plunging breaker, and no sea spikes are present at large incident angles either.In summary, the study of EM scattering from turbulence structure can provide a basis to explain the anomalies of EM scattering from sea surfaces and help us understand the scattering mechanism about the breaking wave more completely.
文摘A RCS prediction system named SCTE (Scattering from Complex Target and Environment) for calculating high-frequency electromagnetic scattering from complex target within complex environment is presented. The scattering body is described by Computer-Aided-Design (CAD) representations in which the complex body is modeled as NURBS (Non-Uniform Rational B-spline) surfaces. The complex environment (rough surface of sea or ground) is also carefully considered by using fractal function. Scattering fields are calculated by using physical optics and the equivalent currents methods. There is a good agreement between the present results and that from measurements which demonstrates the accuracy of this system.
文摘The solution of scattering problem of buried complex bodies needs to not only consider the scattering from the complex bodies, but also apply the boundary conditions in two different types of coordinate systems. This paper applies the conversion technique of vector wave functions combined with the three-dimensional unimoment method to effectively solve this type of complex electromagnetic problem. Using the conversion relations between the cylindrical and spherical vector wave functions, two types of boundary-value problems are conveniently jointed. Both the vector wave function expansion and the multipole expansion belong to eigen function expansion methods and have the same convergence rate. But the former is more rigorous in theory and needs to calculate only two types of eigen components while the latter needs to calculate four types.
基金supported by the National Natural Science Foundation of China(61372033)
文摘An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).
文摘This paper presents a new method for computation of the monostatic radar cross section (RCS) of electrically large conducting objects. Compared with the traditional Z-buffer technique, the improved one can record not only the illuminated surface of the body, but also the information about the shadowed part. So multi-scattering and RCS of cavity can be calculated. The second advantage of it is using dual representation, of the target's facet surface, in which the illuminated part is treated as bicubic patches for RCS calculation, and is simplified to flat facet when ray tracing is done. Excellent agreement with the experiment has been obtained.
文摘As a “global” numerical optimization method, genetic algorithm is briefly introduced. It is applied to optimize the absorbing coating to reduce EM scattering, leading to satisfactory results.
文摘Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane incident wave assumption, the narrowband, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radarseeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the usefulness of the developed formulations.
文摘Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cells. For this purpose, one can find two principal approaches: via electromagnetic (EM) models and empirical (EP) models. In both approaches, the Geophysical Model Functions (GMFs) are used to describe the relation of radar scattering, wind speed, and the geometry of observations. By knowing radar scattering and geometric parameters, it is possible to invert the GMFs to retrieve wind speed. It is very interesting to compare wind speed estimated by the EM models, general descriptions of radar scattering from sea surface, to the one estimated by the EP models, specific descriptions for the inverse problem. Based on the comparisons, some ideas are proposed to improve the performance of the EM models for wind speed retrieval.