为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,...为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,MPM)算法的图像分割方法。该方法利用Voronoi划分技术将图像域划分为若干子区域,待分割图像中的同质区域可以由一组子区域拟合而成,并假定各同质区域内像素强度服从同一独立的正态分布,从而建立图像模型,然后结合EM/MPM算法进行图像分割和模型参数估计,其中,MPM算法用于实现面向同质区域的图像分割,EM算法用于估计图像模型参数。为了验证提出的图像分割方法,分别对合成图像和真实图像进行了分割实验,并和传统的基于像素的MRF分割结果进行对比,测试结果的定性和定量分析表明了该方法的有效性和准确性。展开更多
基于区域和统计的SAR分割方法,提出一种结合Voronoi划分技术、最大期望值EM(Expectation Maximization)和最大边缘概率MPM(Maximization of the Posterior Marginal)算法的多视SAR图像分割方法。首先利用Voronoi划分将图像域划分成不同...基于区域和统计的SAR分割方法,提出一种结合Voronoi划分技术、最大期望值EM(Expectation Maximization)和最大边缘概率MPM(Maximization of the Posterior Marginal)算法的多视SAR图像分割方法。首先利用Voronoi划分将图像域划分成不同的子区域,而每个子区域可以被看成待分割同质区域的一个组成部分,并假设每个子区域内的像素满足同一独立的Gamma分布,从而建立多视SAR图像模型,并在贝叶斯理论架构下建立图像分割模型,然后结合EM/MPM算法进行图像分割和模型参数估计。该方法将基于像元的马尔可夫随机场(Markov Random Field,MRF)模型扩展到基于区域的MRF模型,并且能同时有效地获取模型参数估计和基于区域的SAR图像最优分割。采用本文算法,分别对RADARSAT-Ⅰ/ⅡSAR强度图像和合成SAR强度图像进行了分割实验,定性和定量的测试结果验证了本文方法的有效性、可靠性和准确性。展开更多
为了克服传统基于区域的图像分割方法对图像初始划分完全随机进而导致算法效率低下的缺点,本文提出了一种基于Delaunay划分并结合最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximization of the Posterior Marginal,MPM)...为了克服传统基于区域的图像分割方法对图像初始划分完全随机进而导致算法效率低下的缺点,本文提出了一种基于Delaunay划分并结合最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximization of the Posterior Marginal,MPM)算法的图像分割方法。该方法首先提取图像特征点,并把特征点集作为构建Delaunay三角网的基础点集。利用Delaunay三角网的构建将影像划分成众多彼此连接的超像素,并假设这些超像素内的像素灰度值服从同一独立的正态分布,基于此完成特征场模型的建立,再运用EM\MPM方法分别模拟特征场模型和分割影像。为了验证本文提出的算法能够有效地分割图像,分别对模拟图像和真实图像进行分割测试,并和经典的初始划分完全随机的超像素影像分割算法进行对比,测试结果定性和定量地表明了该方法的有效性和准确性。展开更多
The noniterative algorithm of multiscale MRF has much lower computing complexity and better result thanits iterative counterpart of noncausal MRF model, since it has causality property between scales, and such causali...The noniterative algorithm of multiscale MRF has much lower computing complexity and better result thanits iterative counterpart of noncausal MRF model, since it has causality property between scales, and such causality isconsistent with the character of images. Maximizer of the posterior marginals(MPM)algorithm of multiscale MRFmodel is presented for only one image can be obtained in image segmentation. EM algorithm for parameter estimate isalso given. Experiments demonstrate that comparing with iterative ones, the proposed algorithms have the character-istics of greatly reduced computing time and better segmentation results. This is more notable for large images.展开更多
为了实现对纹理图像的分割,需利用建模像素间相互作用关系,因此本文利用在标号场和特征场中分别建模邻域多边形和邻域像素之间的作用关系,并提出一种基于马尔科夫随机场(Markov Random Field,MRF)的区域化纹理图像分割方法。即利用Voro...为了实现对纹理图像的分割,需利用建模像素间相互作用关系,因此本文利用在标号场和特征场中分别建模邻域多边形和邻域像素之间的作用关系,并提出一种基于马尔科夫随机场(Markov Random Field,MRF)的区域化纹理图像分割方法。即利用Voronoi划分技术,将图像划分为若干个多边形;在标号场上利用Gibbs分布建模相邻多边形标号间的相互作用,在特征场上利用高斯分布建模多边形内邻域像素间光谱测度的相关性;结合贝叶斯定理建立分割模型;通过最大期望值(Expectation Maximization,EM)算法来估计模型参数,进而获得最优分割结果。本文分别对合成纹理图像、自然纹理图像和遥感图像进行分割实验,并对分割结果进行定性和定量评价。通过计算混淆矩阵得出Kappa值为0.97,满足了优秀分类器的标准。本文提出的算法具有很强的抗噪和描述复杂光谱测度的能力,可行性好,准确性高。展开更多
文摘为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,MPM)算法的图像分割方法。该方法利用Voronoi划分技术将图像域划分为若干子区域,待分割图像中的同质区域可以由一组子区域拟合而成,并假定各同质区域内像素强度服从同一独立的正态分布,从而建立图像模型,然后结合EM/MPM算法进行图像分割和模型参数估计,其中,MPM算法用于实现面向同质区域的图像分割,EM算法用于估计图像模型参数。为了验证提出的图像分割方法,分别对合成图像和真实图像进行了分割实验,并和传统的基于像素的MRF分割结果进行对比,测试结果的定性和定量分析表明了该方法的有效性和准确性。
文摘基于区域和统计的SAR分割方法,提出一种结合Voronoi划分技术、最大期望值EM(Expectation Maximization)和最大边缘概率MPM(Maximization of the Posterior Marginal)算法的多视SAR图像分割方法。首先利用Voronoi划分将图像域划分成不同的子区域,而每个子区域可以被看成待分割同质区域的一个组成部分,并假设每个子区域内的像素满足同一独立的Gamma分布,从而建立多视SAR图像模型,并在贝叶斯理论架构下建立图像分割模型,然后结合EM/MPM算法进行图像分割和模型参数估计。该方法将基于像元的马尔可夫随机场(Markov Random Field,MRF)模型扩展到基于区域的MRF模型,并且能同时有效地获取模型参数估计和基于区域的SAR图像最优分割。采用本文算法,分别对RADARSAT-Ⅰ/ⅡSAR强度图像和合成SAR强度图像进行了分割实验,定性和定量的测试结果验证了本文方法的有效性、可靠性和准确性。
文摘为了克服传统基于区域的图像分割方法对图像初始划分完全随机进而导致算法效率低下的缺点,本文提出了一种基于Delaunay划分并结合最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximization of the Posterior Marginal,MPM)算法的图像分割方法。该方法首先提取图像特征点,并把特征点集作为构建Delaunay三角网的基础点集。利用Delaunay三角网的构建将影像划分成众多彼此连接的超像素,并假设这些超像素内的像素灰度值服从同一独立的正态分布,基于此完成特征场模型的建立,再运用EM\MPM方法分别模拟特征场模型和分割影像。为了验证本文提出的算法能够有效地分割图像,分别对模拟图像和真实图像进行分割测试,并和经典的初始划分完全随机的超像素影像分割算法进行对比,测试结果定性和定量地表明了该方法的有效性和准确性。
文摘The noniterative algorithm of multiscale MRF has much lower computing complexity and better result thanits iterative counterpart of noncausal MRF model, since it has causality property between scales, and such causality isconsistent with the character of images. Maximizer of the posterior marginals(MPM)algorithm of multiscale MRFmodel is presented for only one image can be obtained in image segmentation. EM algorithm for parameter estimate isalso given. Experiments demonstrate that comparing with iterative ones, the proposed algorithms have the character-istics of greatly reduced computing time and better segmentation results. This is more notable for large images.
文摘为了实现对纹理图像的分割,需利用建模像素间相互作用关系,因此本文利用在标号场和特征场中分别建模邻域多边形和邻域像素之间的作用关系,并提出一种基于马尔科夫随机场(Markov Random Field,MRF)的区域化纹理图像分割方法。即利用Voronoi划分技术,将图像划分为若干个多边形;在标号场上利用Gibbs分布建模相邻多边形标号间的相互作用,在特征场上利用高斯分布建模多边形内邻域像素间光谱测度的相关性;结合贝叶斯定理建立分割模型;通过最大期望值(Expectation Maximization,EM)算法来估计模型参数,进而获得最优分割结果。本文分别对合成纹理图像、自然纹理图像和遥感图像进行分割实验,并对分割结果进行定性和定量评价。通过计算混淆矩阵得出Kappa值为0.97,满足了优秀分类器的标准。本文提出的算法具有很强的抗噪和描述复杂光谱测度的能力,可行性好,准确性高。