This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti...We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.展开更多
We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequen...We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.展开更多
Based on x-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on x-type entangled stat...Based on x-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on x-type entangled states |X00〉3214 is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed.展开更多
We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three partie...We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.展开更多
We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet...We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.展开更多
We propose two physical schemes, which can teleport unknown atomic entangled states from user A (Alice) to user B (Bob) via GHZ class states as quantum channel The two schemes are both based on cavity QED techniqu...We propose two physical schemes, which can teleport unknown atomic entangled states from user A (Alice) to user B (Bob) via GHZ class states as quantum channel The two schemes are both based on cavity QED techniques. In the two schemes, teleportation and distillation procedures can be realized simultaneously. The second teleportation scheme is more advantageous than the first one.展开更多
A scheme for probabilistic remotely preparing N-particle d-dimensional equatorial entangled states via entangled swapping with three parties is presented. The quantum channel is composed of N - 1 pairs of bipartite d-...A scheme for probabilistic remotely preparing N-particle d-dimensional equatorial entangled states via entangled swapping with three parties is presented. The quantum channel is composed of N - 1 pairs of bipartite d-dimensional non-maximally entangled states and a tripartite d-dimension non-maximally entangled state. It is shown that the sender can help either of the two receivers to remotely prepare the original state, and the N-particle projective measurement and the generalized Hadamard transformation are needed in this scheme. The total success probability and classical communication cost are calculated.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomi...In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomic internal states and coherent states of cavity field. We also discuss the methods of distinguishing coherent states [±α〉 in a cavity. Finally, a brief discussion about the feasibility of this scheme in experiment is presented.展开更多
We propose two schemes for concentrating unknown nonmaximally tripartite GHZ entangled states via cavity quantum electrodynamics (QED) techniques. The finial pure states obtained from the two schemes are shared by t...We propose two schemes for concentrating unknown nonmaximally tripartite GHZ entangled states via cavity quantum electrodynamics (QED) techniques. The finial pure states obtained from the two schemes are shared by two or three parties. Our schemes only require large-detuned interaction between two driven atoms and the quantized cavity mode, which is insensitive to both the cavity decay and thermal field, thus the schemes are well within current experimental technology.展开更多
Inspired by a recent paper [2002 J. Opt. B 4 316] we present an alternative scheme to teleport an entanglement of zero- and one-photon states of a running-wave field. The scheme employs only linear optical elements pl...Inspired by a recent paper [2002 J. Opt. B 4 316] we present an alternative scheme to teleport an entanglement of zero- and one-photon states of a running-wave field. The scheme employs only linear optical elements plus single-photon sources and detectors.展开更多
A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages be...A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state A-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.展开更多
It has been extensively shown in past literature that Bayesian game theory and quantum non-locality have strong ties between them. Pure entangled states have been used, in both common and conflict interest games, to g...It has been extensively shown in past literature that Bayesian game theory and quantum non-locality have strong ties between them. Pure entangled states have been used, in both common and conflict interest games, to gain advantageous payoffs, both at the individual and social level. In this paper, we construct a game for a mixed entangled state such that this state gives higher payoffs than classically possible, both at the individual level and the social level. Also, we use the I-3322 inequality so that states that aren’t useful advice for the Bell-CHSH<sup>1</sup> inequality can also be used. Finally, the measurement setting we use is a restricted social welfare strategy (given this particular state).展开更多
We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurement...We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.展开更多
We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qub...We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.展开更多
A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random an...A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.展开更多
The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the re...The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the receiver. The receiver performs the unitary transformations and makes projective measurements on his particles to obtain the secret information. Using teleportation, the transmission of three-qubit secret information can be completed in each quantum channel展开更多
We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown th...We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown that, with the cavity detuning, the applied driving field detuning and vacuum Rabi coupling, we can produce an entangled coherent state in two single-mode cavities and generate the entangled coherent cluster states in two bimodal vacuum cavities. Tuning these parameters also allows us to acquire the anti-Jaynes-Cummings (AJC) interaction, with which we can generate the maximally two-photon entangled states, and the two-atom and the two-photon entangled cluster states.展开更多
A scheme is presented for generating entangled states of multiple atoms in a cavity. In the scheme the atoms simultaneously interact with a cavity mode, with the first atom driven by two classical fields and the other...A scheme is presented for generating entangled states of multiple atoms in a cavity. In the scheme the atoms simultaneously interact with a cavity mode, with the first atom driven by two classical fields and the other atoms driven by a classical field. Our scheme is valid even if the cavity decay rate is larger than the effective coupling strength, which is important for experiment. The generation of entangled states is conditional on the detection of a photon decaying from the cavity and thus the fidelity of the entangled state is insensitive to the detection inefficiency. Furthermore, the scheme can be applied to the case with any number of atoms in principle.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004), and the Scientific Research Fund of Hunan Provincial Education Department, China(Grant No 03c543).
文摘We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.
基金Project supported by the National Natural Science Foundation of China (Grant No 10847147)the Natural Science Foundation of Jiangsu Province (Grant No BK2008437)+1 种基金Jiangsu Provincial Universities (Grant No 07KJB510066)the Science Foundation of Nanjing University of Information Science and Technology
文摘We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.
基金Project supported by the National High-Tech Research and Development Program of China (Grant Nos. 2006AA01Z440,2009AA012441 and 2009AA012437)National Basic Research Program of China (Grant No. 2007CB311100)+4 种基金the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001)the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004)Beijing Natural Science Foundation (Grant Nos. 1093015 and 1102004)the ISN Open FoundationSpecialized Research Fund for the Doctoral Programm of Higher Education (Grant No. 20091103120014)
文摘Based on x-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on x-type entangled states |X00〉3214 is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos. 2006kj070A and 2006kj057B, and the Talent Foundation of Anhui University
文摘We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056 and the Ph. D Tutoring Foundation of the Ministry of Education
文摘We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.
文摘We propose two physical schemes, which can teleport unknown atomic entangled states from user A (Alice) to user B (Bob) via GHZ class states as quantum channel The two schemes are both based on cavity QED techniques. In the two schemes, teleportation and distillation procedures can be realized simultaneously. The second teleportation scheme is more advantageous than the first one.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20060357003
文摘A scheme for probabilistic remotely preparing N-particle d-dimensional equatorial entangled states via entangled swapping with three parties is presented. The quantum channel is composed of N - 1 pairs of bipartite d-dimensional non-maximally entangled states and a tripartite d-dimension non-maximally entangled state. It is shown that the sender can help either of the two receivers to remotely prepare the original state, and the N-particle projective measurement and the generalized Hadamard transformation are needed in this scheme. The total success probability and classical communication cost are calculated.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
基金The project supported by the Scientific Research Fund of Education Department of Hunan Province under Grant No.06C354 and the Natural Science Foundation of Hunan Province under Grant No. 06JJ5015 tCorresponding author,
文摘In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomic internal states and coherent states of cavity field. We also discuss the methods of distinguishing coherent states [±α〉 in a cavity. Finally, a brief discussion about the feasibility of this scheme in experiment is presented.
基金Project supported by the Natural Science Foundation of the Education Department of Anhui Province, China (Grant Nos 2004kj005zd and 2005kj235) and Anhui Provincial Natural Science Foundation, China (Grant No 03042401) and the Talent Foundation of Anhui University, China.
文摘We propose two schemes for concentrating unknown nonmaximally tripartite GHZ entangled states via cavity quantum electrodynamics (QED) techniques. The finial pure states obtained from the two schemes are shared by two or three parties. Our schemes only require large-detuned interaction between two driven atoms and the quantized cavity mode, which is insensitive to both the cavity decay and thermal field, thus the schemes are well within current experimental technology.
文摘Inspired by a recent paper [2002 J. Opt. B 4 316] we present an alternative scheme to teleport an entanglement of zero- and one-photon states of a running-wave field. The scheme employs only linear optical elements plus single-photon sources and detectors.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB923102)the National Natural Science Foundation of China (Grant No.11074199)
文摘A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state A-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.
文摘It has been extensively shown in past literature that Bayesian game theory and quantum non-locality have strong ties between them. Pure entangled states have been used, in both common and conflict interest games, to gain advantageous payoffs, both at the individual and social level. In this paper, we construct a game for a mixed entangled state such that this state gives higher payoffs than classically possible, both at the individual level and the social level. Also, we use the I-3322 inequality so that states that aren’t useful advice for the Bell-CHSH<sup>1</sup> inequality can also be used. Finally, the measurement setting we use is a restricted social welfare strategy (given this particular state).
文摘We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.
基金supported by the National Natural Science Foundations of China (Grant Nos. 10947017/A05 and 11074190)the Science Foundation of the Key Laboratory of Novel Thin Film Solar Cells, China (Grant No. KF200912)the Graduates' Innovative Scientific Research Project of Zhejiang Province, China (Grant No. 2011831)
文摘We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60472018 and 10547125
文摘A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.
基金supported by the National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province under Grant No.2008006
文摘The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the receiver. The receiver performs the unitary transformations and makes projective measurements on his particles to obtain the secret information. Using teleportation, the transmission of three-qubit secret information can be completed in each quantum channel
基金Project supported by the National Natural Science Foundation of China (Grant No 10774088)the Key Program of National Natural Science Foundation of China (Grant No 10534030)the Funds from Qufu Normal University, China (Grant No XJ0621)
文摘We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown that, with the cavity detuning, the applied driving field detuning and vacuum Rabi coupling, we can produce an entangled coherent state in two single-mode cavities and generate the entangled coherent cluster states in two bimodal vacuum cavities. Tuning these parameters also allows us to acquire the anti-Jaynes-Cummings (AJC) interaction, with which we can generate the maximally two-photon entangled states, and the two-atom and the two-photon entangled cluster states.
基金supported by the Doctorate Foundation of the State Education Ministry of China (Grant No 20070386002)
文摘A scheme is presented for generating entangled states of multiple atoms in a cavity. In the scheme the atoms simultaneously interact with a cavity mode, with the first atom driven by two classical fields and the other atoms driven by a classical field. Our scheme is valid even if the cavity decay rate is larger than the effective coupling strength, which is important for experiment. The generation of entangled states is conditional on the detection of a photon decaying from the cavity and thus the fidelity of the entangled state is insensitive to the detection inefficiency. Furthermore, the scheme can be applied to the case with any number of atoms in principle.