Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresp...Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of finite element analysis.展开更多
This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element a...This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H^1-norm and the pressure in the L^2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results.展开更多
In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary...In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results.展开更多
We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh...We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh.We approximate the velocity by CNRQ_(1)elements and the pressure by piecewise constants.The errors for the velocity in the H^(1)norm and for the pressure in the L^(2)norm are O(h)and the error for the velocity in the L^(2)norm is O(h^(2)).Numerical experiments are presented to support our theoretical results.展开更多
A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.
In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space Q1^(3) and are edge-oriented, analogical to the case of the rotated Q1 quadrilateral element. A ...In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space Q1^(3) and are edge-oriented, analogical to the case of the rotated Q1 quadrilateral element. A priori error estimates are given to show that the new elements achieve first-order accuracy in the energy norm and second-order accuracy in the L^2 norm. This theoretical result is confirmed by the numerical tests.展开更多
文摘Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of finite element analysis.
基金Project supported by the National Natural Science Foundation of China(No.11271340)
文摘This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H^1-norm and the pressure in the L^2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results.
基金Acknowledgements. The work of the first author was supported by the National Basic Research Program under the Grant 2011CB30971 and National Science Foundation of China (11171335). The work of the second author was supported by the National Natural Science Foundation of China (Grant No. 11201394) and the Fundamental Research Funds for the Central Universities (Grant No. 2012121003).
文摘In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results.
基金This work is supported by the “985”program of Jilin University and the National Natural Science Foundation of China(NO.10971082).
文摘We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh.We approximate the velocity by CNRQ_(1)elements and the pressure by piecewise constants.The errors for the velocity in the H^(1)norm and for the pressure in the L^(2)norm are O(h)and the error for the velocity in the L^(2)norm is O(h^(2)).Numerical experiments are presented to support our theoretical results.
基金Supported by the National Natural Science Foundation of China(No.10671184).
文摘A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.
基金The research is supported by National Basic Research Program of china(No. 2005CB321702)National Natural Science Foundation of china(No. 10431050)
文摘In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space Q1^(3) and are edge-oriented, analogical to the case of the rotated Q1 quadrilateral element. A priori error estimates are given to show that the new elements achieve first-order accuracy in the energy norm and second-order accuracy in the L^2 norm. This theoretical result is confirmed by the numerical tests.