Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeut...Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.展开更多
OBJECTIVE Here we investigated the effects and the underlying mechanism of Ginkgolide K(1,10-dihydroxy-3,14-didehydroginkgolide,GK)on cardiac ER stress.METHODS Cell death,apoptosis,and ER stressrelated signalling path...OBJECTIVE Here we investigated the effects and the underlying mechanism of Ginkgolide K(1,10-dihydroxy-3,14-didehydroginkgolide,GK)on cardiac ER stress.METHODS Cell death,apoptosis,and ER stressrelated signalling pathwayswere measuredin cultured neonatal rat cardiomyocytes(NRCMs),treated with the ER stress inducers tunicamycin,hydrogen peroxide,and thapsigargin.Acute myocardial infarction was established using left coronary artery occlusion in mice,and infarct size was measured by triphenyltetrazolium chloride(TTC)staining.Echocardiography was used to assess heart function and transmission electron microscopy for evaluating ER expansion.RESULTS GK significantly decreased ER stress-induced cell death in both in vitro and in vivomodels.In ischemic injured mice,GK treatment reduced infarct size,rescued heart dysfunction and ameliorated ER dilation.Mechanistic studies revealed that the beneficial effects of GK occur through enhancement of inositol-requiring enzyme 1α(IRE1α)/X box-binding protein-1(XBP1)activity,which in turn leads to increased ER-associated degradation(ERAD)-mediated clearance of misfolded proteins and autophagy.In addition,GK is also able to partially repress the pro-apoptotic action of regulated IRE1-dependent decay(RIDD)and JNK pathway.CONCLUSION GK acts through selective activation of the IRE1α/XBP1 pathway to limit ER stress injury.GK is revealed as a promising therapeutic agent to ameliorate ER stress for treating cardiovascular diseases.展开更多
Cantharidin(CTD)is a bioactive ingredient isolated from Cantharis vesicatoria(blister beetles),which has potential therapeutic value as an anticancer agent.Magnesium Demethylcantharidate(MDC)is a recently developed de...Cantharidin(CTD)is a bioactive ingredient isolated from Cantharis vesicatoria(blister beetles),which has potential therapeutic value as an anticancer agent.Magnesium Demethylcantharidate(MDC)is a recently developed derivative of Cantharidin(CTD),and previous studies have illustrated its excellent anticancer activity on HCC cells.However,the effect and mechanism of MDC remains unclear and need to be further studied.In particular,whether MDC can cause ER stress in HCC is still unknown.In this study,we demonstrated that endoplasmic reticulum stress(ERS)-related proteins were changed in SMMC-7721 and Bel-7402 cells after being exposed to MDC.Moreover,we found that MDC could significantly inhibit the growth of xenograft tumor in nude mice.In summary,we confirmed that MDC could induce ERS in HCC cells and thus induce apoptosis.展开更多
Fibronectin containing extra domain A(EDA~+ FN),a functional glycoprotein participating in several cellular processes,correlates with chronic liver disease.Herein,we aim to investigate the expression and secretion ...Fibronectin containing extra domain A(EDA~+ FN),a functional glycoprotein participating in several cellular processes,correlates with chronic liver disease.Herein,we aim to investigate the expression and secretion of EDA~+ FN from hepatocytes in nonalcoholic fatty liver disease(NAFLD) and the underlying mechanisms.Circulating levels of EDA~+ FN were determined by ELISA in clinical samples.Western blotting and flow cytometry were performed on L02 and Hep G2 cell lines to analyze whether the levels of EDA~+ FN were associated with endoplasmic reticulum(ER) stress-related cell death.Circulating levels of EDA~+ FN in NAFLD patients were significantly higher than those in control subjects,and positively related with severity of ultrasonographic steatosis score.In cultured hepatocytes,palmitate up-regulated the expression of EDA~+ FN in a dose-dependent manner.Conversely,when the cells were pretreated with 4-phenylbutyrate,a specific inhibitor of ER stress,up-regulation of EDA~+ FN could be abrogated.Moreover,silencing CHOP by sh RNA enhanced the release of EDA~+ FN from hepatocytes following palmitate treatment,which was involved in ER stress-related cell damage.These findings suggest that the up-regulated level of EDA~+ FN is associated with liver damage in NAFLD,and ER stress-mediated cell damage contributes to the release of EDA~+ FN from hepatocytes.展开更多
The endoplasmic reticulum is the central organelle within a eukaryotic cell where newly synthesized proteins are processed and properly folded. An excess of unfolded or mis-folded proteins induces ER stress signalling...The endoplasmic reticulum is the central organelle within a eukaryotic cell where newly synthesized proteins are processed and properly folded. An excess of unfolded or mis-folded proteins induces ER stress signalling pathways. Usually this means a pro-survival strategy for the cell, whereas under extended stress conditions the ER stress signalling pathways have a pro-apoptotic function. CK2 plays a key role in the regulation of the pro-survival as well as the proapoptotic ER stress signalling by directly modulating the activities of members of the ER stress signalling pathways by phosphorylation, regulating the expression of the key factors of the signalling pathways or binding to regulator proteins. The present review will summarize the state of the art in this new emerging field.展开更多
Objective:To study the protective effect of hyperoside(Hyp) on cardiac ischemia reperfusion injury and its potential mechanism.Methods:Rats were divided into two groups for the evaluation,the Hyp(50 uM Hyp;n=8) and th...Objective:To study the protective effect of hyperoside(Hyp) on cardiac ischemia reperfusion injury and its potential mechanism.Methods:Rats were divided into two groups for the evaluation,the Hyp(50 uM Hyp;n=8) and the control group(n=8).Rat hearts were isolated and perfused with Krebs-Henseleit buffer(KHB) for 30 min.After being inhibited with cardioplegic solution,they were stored for 4 h in B21 solution at 4℃.Afterwards,rat hearts were perfused with KHB again for 45 min.In this period.Hyp was added into solutions of cardioplegia for storage and KHB.Parameters of cardiac functions,including heart rate,the systolic pressure of the left ventricle,the end-diastolic pressure of the left ventricle,the developed pressure of the left ventricle,the left-ventricular systolic pressure and the peak rise rate of the pressure of the left ventricle were recorded.The levels of adenosine triphosphate(ATP),the content of malondialdehyde and apoptotic cells were determined to evaluate the protective effect of Hyp on hearts suffered from ischemia reperfusion injury.Moreover,cultured cardiac myocytes were subjected to the process simulating ischemia/reperfusion.What were analyzed included the endoplasmic reticulum(ER) stress hallmarks expressions,such as binding immunoglobulin protein and C/EBP homologous protein,using the western blot and real-time PCR.Besides,the NF-E2-related factor 2(Nrf2) expression was measured to explore the potential mechanism.Results:Compared with the control group,the Hyp group had better cardiac functional parameters and higher ATP levels;pretreatment of Hyp greatly relieved the apoptosis of myocyte,decreased oxidative stress as well as ER stress and activated the signaling pathway of anti-oxidative Nrf2 to a further extent.Conclusions:Hyp plays an important role in preserving cardiac function by improving ATP levels of tissue,easing oxidative injury of myocardium and reducing apoptosis following IRI dramatically,while the ER stress inhibition and the downstream Nrf2 signaling activation may contribute to the effects of protection.展开更多
OBJECTIVE To explore the potential effect and mechanisms of protopanaxadiol deriva.tive 1-(3,4-dimethoxyphenethyl)-3-(3-dehydroxyl-20(s)-protopa-naxadiol-3 b-yl)-urea(DDPU) in the treatment of Alzheimer disease.METHOD...OBJECTIVE To explore the potential effect and mechanisms of protopanaxadiol deriva.tive 1-(3,4-dimethoxyphenethyl)-3-(3-dehydroxyl-20(s)-protopa-naxadiol-3 b-yl)-urea(DDPU) in the treatment of Alzheimer disease.METHODS ELISA assay was performed in both HEK293-APPswe and CHO-APP cells to demonstrate the efficacy of DDPU in reducing Ab level.SH-SY5 Y,primary neurons and astrocyte cellswereused to study the regulation of DDPU against the signaling pathways involved in Aβ/ER-stress pathology.APP/PS1 transgenic mice wereusedto study the regulation of DDPU against ADL and cognitive deficits.APP/PS1 transgenic mice were randomly placed into three groups(n=10):The two 6-month transgenic groups were administrated with 30 mg·kg^(-1) DDPU or vehicle and the 6-month non-transgenic group was administrated with vehicle for 100 days by intraperitonealinjec.tion.After 100-day administration,nest construction assay and Morris water maze(MWM) assay were applied to evaluate the daily living activities and cognitive abilities of the mice with continuous DDPU treatment.Upon completion of behavior assays,mice were euthanized,and the brains were removed and bisected in mid-sagittal plane.The right hemispheres were frozen and stored at-80°C,and the left hemispheres were fixed in 4% paraformaldehyde.RESULTS DDPU effectively improved learning and memory impairments in APP/PS1 transgenic mice,and the underlying mechanisms have been inten.sively investigated.DDPU reduced Ab production by inhibiting the PERK/eIF2 a signaling-mediated BACE1 translation,while promoted Ab clearance as a PI3K inhibitor thus negatively regulating PI3K/AKT/mTOR signaling in promotion of autophagy.Moreover,DDPU also exhibited neuroprotective effect by attenuating ER stress.Therefore,all findings have clearly demonstrated the crosstalk between Ab and ER stress,and confirmed that targeting ER stress should be a potential target for innovative anti-AD drug development,while highlighted the potential of DDPU in the treatment of AD.展开更多
Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease (IBD), may result from immune system dysfunction, leading to the sustained overproduction of reactive oxygen species (ROS) and subsequent cellula...Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease (IBD), may result from immune system dysfunction, leading to the sustained overproduction of reactive oxygen species (ROS) and subsequent cellular oxidative stress damage. Recent studies have identified both peroxisome proliferator-activated receptor-γ (PPARγ) and endoplasmic reticulum (ER) stress as critical targets for the treatment of IBD. Oroxyloside (C22H20O11), derived from the root of Scutellaria baicalensis Georgi, has traditionally been used in treating inflammatory diseases. In this study, we investigated the molecular mechanisms by which oroxyloside mitigates dextran sulfate sodium (DSS)-induced colitis. We examined the effects of oroxyloside on ROS-mediated ER stress in colitis, including the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP, which are associated with ER stress. The beneficial impact of oroxyloside was reversed by the PPARγ antagonist GW9662 (1 mg·kg^(−1), i.v.) in vivo. Furthermore, oroxyloside decreased pro-inflammatory cytokines and ROS production in both bone marrow-derived macrophages (BMDM) and the mouse macrophage cell line RAW 264.7. However, PPARγ siRNA transfection blocked the anti-inflammatory effect of oroxyloside and even abolished ROS generation and ER stress activation inhibited by oroxyloside in vitro. In conclusion, our study demonstrates that oroxyloside ameliorates DSS-induced colitis by inhibiting ER stress via PPARγ activation, suggesting that oroxyloside might be a promising effective agent for IBD.展开更多
Early pathogenesis of ischemia-reperfusion(I/R)-induced acute kidney injury(AKI)is dominated by intracellular calcium overload,which induces oxidative stress,intracellular energy metabolism disorder,inflammatory activ...Early pathogenesis of ischemia-reperfusion(I/R)-induced acute kidney injury(AKI)is dominated by intracellular calcium overload,which induces oxidative stress,intracellular energy metabolism disorder,inflammatory activation,and a series of pathologic cascaded reactions that are closely intertwined with self-amplifying and interactive feedback loops,ultimately resulting in cell damage and kidney failure.Currently,most nanomedicines originate from the perspective of antioxidant stress,which can only quench existing reactive oxide species(ROS)but cannot prevent the continuous production of ROS,resulting in insufficient efficacy.As a safe and promising drug,BAPTA-AM is hydrolyzed into BAPTA by intracellular esterase upon entering cells,which can rapidly chelate with overloaded Ca^(2+),restoring intracellular calcium homeostasis,thus inhibiting ROS regeneration at the source.Here,we designed a KTP-targeting peptide-modified yolk-shell structure of liposome–poly(ethylene glycol)methyl ether-block-poly(L-lactide-co-glycolic)(mPLGA)hybrid nanoparticles(<100 nm),with the characteristics of high encapsulation rate,high colloid stability,facile modification,and prolonged blood circulation time.Once the BA/mPLGA@Lipo-KTP was targeted to the site of kidney injury,the cholesteryl hemisuccinate(CHEMS)in the phospholipid bilayer,as an acidic cholesterol ester,was protonated in the simulated inflammatory slightly acidic environment(pH 6.5),causing the liposomes to rupture and release the BA/mPLGA nanoparticles,which were then depolymerized by intracellular esterase.The BAPTA-AM was diffused and hydrolyzed to produce BAPTA,which can rapidly cut off the malignant loop of calcium overload/ROS generation at its source,blocking the endoplasmic reticulum(ER)apoptosis pathway(ATF4–CHOP–Bax/Bcl-2,Casp-12–Casp-3)and the inflammatory pathway(TNF-α–NF-κB–IL-6 axes),thus alleviating pathological changes in kidney tissue,thereby inhibiting the expression of renal tubular marker kidney injury molecule 1(Kim-1)(reduced by 82.9%)and also exhibiting prominent anti-apoptotic capability(TUNEL-positive ratio decreased from 40.2%to 8.3%),significantly restoring renal function.Overall,this research holds huge potential in the treatment of I/R injury-related diseases.展开更多
Probiotics could effectively eliminate excess reactive oxygen species(ROS)generated during aging or lipid metabolism disorders,but their mechanism is unclear.The major purpose of this study was to investigate the mech...Probiotics could effectively eliminate excess reactive oxygen species(ROS)generated during aging or lipid metabolism disorders,but their mechanism is unclear.The major purpose of this study was to investigate the mechanism of Lactiplantibacillus plantarun AR113 alleviating oxidative stress injury in the D-galactose induced aging mice.The result showed that pretreatment with L.plantarun AR113 significantly relieving H_(2)O_(2)induced cytotoxicity in HepG2 cells by maintain cell membrane integrity and increasing antioxidant enzyme activities.In D-galactose induced aging mice,L.plantarun AR113 could significantly attenuate liver damage and inflammatory infiltration by promoting endogenous glutathione(GSH)synthesis and activating the Nrf2/Keap1 signaling pathway in mice,and increasing the expression of regulated phaseⅡdetoxification enzymes and antioxidant enzymes.Further analysis shown that gavage of L.plantarun AR113 could significantly reduce the expression of G protein-coupled receptor 78(GPR78)and C/EBP homologous protein(CHOP)proteins,and promote the restoration of endoplasmic reticulum(ER)homeostasis,thereby activating cell anti-apoptotic pathways.These results were also confirmed in H_(2)O_(2)-treated HepG2 experiments.It indicated that L.plantarun AR113 could inhibit D-galactose-induced liver injury through dual inhibition of ER stress and oxidative stress.L.plantarun AR113 have good application potential in anti-aging and alleviating metabolic disorders.展开更多
The endoplasmic reticulum(ER)and the plasma membrane(PM)form ER–PM contact sites(EPCSs)that allow the ER and PM to exchange materials and information.Stress-induced disruption of protein folding triggers ER stress,an...The endoplasmic reticulum(ER)and the plasma membrane(PM)form ER–PM contact sites(EPCSs)that allow the ER and PM to exchange materials and information.Stress-induced disruption of protein folding triggers ER stress,and the cell initiates the unfolded protein response(UPR)to resist the stress.However,whether EPCSs play a role in ER stress in plants remains unclear.VESICLE-ASSOCIATED MEMBRANE PROTEIN(VAMP)-ASSOCIATED PROTEIN 27-1(VAP27-1)functions in EPCS tethering and is encoded by a family of 10 genes(VAP27-1–10)in Arabidopsis thaliana.Here,we used CRISPR-Cas9-mediated genome editing to obtain a homozygous vap27-1 vap27-3 vap27-4(vap27-1/3/4)triple mutant lacking three of the key VAP27 family members in Arabidopsis.The vap27-1/3/4 mutant exhibits defects in ER–PM connectivity and EPCS architecture,as well as excessive UPR signaling.We further showed that relocation of VAP27-1 to the PM mediates specific VAP27-1-related EPCS remodeling and expansion under ER stress.Moreover,the spatiotemporal dynamics of VAP27-1 at the PM increase ER–PM connectivity and enhance Arabidopsis resistance to ER stress.In addition,we revealed an important role for intracellular calcium homeostasis in the regulation of UPR signaling.Taken together,these results broaden our understanding of the molecular and cellular mechanisms of ER stress and UPR signaling in plants,providing additional clues for improving plant broad-spectrum resistance to different stresses.展开更多
The membrane-associated transcription factor, bZlP28, is relocated from the endoplasmic reticulum (ER) to the Golgi and proteolytically released from the membrane mediated by two proteases, SlP and S2P, in response ...The membrane-associated transcription factor, bZlP28, is relocated from the endoplasmic reticulum (ER) to the Golgi and proteolytically released from the membrane mediated by two proteases, SlP and S2P, in response to ER stress in Arabidopsis. The activated N-terminal domain recruits nuclear factor Y (NF-Y) subunits in the nucleus to regulate ER stress downstream genes. Little is known about the functions of the bZIP28 C-terminal lumen-facing domain. Here, we provide novel insights into how the ER lumen-facing domain affects the biological function and organelle-to-organelle movement of bZIP28 in the ER stress response. First, we demonstrated the functional redundancy of bZlP28 and bZIP60 by generation and analysis of the bZIP28 and bZIP60 double mutant zip28zip60. Subsequent genetic complementation experiments in zip28zip60 background with deletions on bZlP28 lumen-facing domain highlighted the importance of lumen-facing domain for its in vivo function of bZIP28 in the ER stress response. The protein subcellular localization and Western blotting results further revealed that the bZIP28 lumen-facing domain contains ER retention signal which is important for the proteolytic activation of bZIP28. Thus, the bZIP28 lumen-facing C-terminus plays important roles in the ER-to-Golgi movement of bZlP28, which may contribute to the sensing of the ER stress.展开更多
Macrophage death in advanced atherosclerosis promotes plaque necrosis and destabilization.Involvement of autophagy in bulk degradation of cellular components has been recognized recently as an important mechanism for ...Macrophage death in advanced atherosclerosis promotes plaque necrosis and destabilization.Involvement of autophagy in bulk degradation of cellular components has been recognized recently as an important mechanism for cell survival under endoplasmic reticulum(ER) stress.We previously found that the engagement of class A scavenger receptor(SR-A) triggered JNK-dependent apoptosis in ER-stressed macrophages.However,pro-apoptotic mechanisms mediated by SR-A are not fully understood.Therefore,we sought to see if SR-A mediated apoptosis was associated with autophagy in macrophages.Here,we showed that fucoidan inhibited microtubule-associated protein light chain 3-phospholipid conjugates(LC3-Ⅱ) formation as well as the number of autophagosomes under ER stress.The inhibition of LC3-Ⅱ formation was paralleled by the activation of the mTOR pathway,and the inhibition of mTOR allowed LC3-Ⅱ induction in macrophages treated with thapsigargin plus fucoidan.Furthermore,apoptosis induced by fucoidan was prevented under ER stress by the mTOR inhibitor.We propose that fucoidan,a SR-A agonist,may contribute to macrophage apoptosis during ER stress by inhibiting autophagy.展开更多
Many sources of stress cause accumulation of unfolded or misfolded proteins in endoplasmic reticulum(ER), which elicits the unfolded protein response(UPR) to either promote cell survival or programmed cell death depen...Many sources of stress cause accumulation of unfolded or misfolded proteins in endoplasmic reticulum(ER), which elicits the unfolded protein response(UPR) to either promote cell survival or programmed cell death depending on different developmental context or stress severity. The Arabidopsis membrane-associated transcription factor, b ZIP28, is the functional equivalent of mammalian ATF6, which relocates from the ER to the Golgi where it is proteolytically processed and released from the membrane to the nucleus to mediate the UPR. Although the canonical site-1 protease(S1P) cleavage site on the ER lumen-facing domain is well conserved between b ZIP28 and ATF6, the importance of S1 P cleavage on b ZIP28 has not been experimentally demonstrated. Here we provide genetic evidence that the RRIL573 site, but not the RVLM373 site, on the lumen-facing domain of bZ IP28 is critical for the biological function of b ZIP28 under ER stress condition. Further biochemistry and cell biology studies demonstrated that the RRIL573 site, but not the RVLM373 site, is required for proteolytic processing and nuclear relocation of b ZIP28 in response to ER stress. Our results reveal that S1 P cleavage site plays a pivotal role in activation and function of b ZIP28 during UPR in plants.展开更多
N-acetylglucosaminyltransferase V (GnT-V) is an important tumorigenesis and metastasis-associated enzyme. To study its biofunction, the GnT-V stably suppressed cell line (GnT-V-AS/7721) was constructed from 7721 h...N-acetylglucosaminyltransferase V (GnT-V) is an important tumorigenesis and metastasis-associated enzyme. To study its biofunction, the GnT-V stably suppressed cell line (GnT-V-AS/7721) was constructed from 7721 hepatocarcinoma cells in previous study. In this study, cDNA array gene expression profiles were compared between GnT-V-AS/7721 and parental 7721 cells. The data indicated that GnT-V-AS/7721 showed a characteristic expression pattern consistent with the ER stress. The molecular mechanism of the ER stress was explored in GnT-V-AS/7721 by the analysis on key molecules in both two unfolded protein response (UPR) pathways. For ATF6 and Irel/XBP-1 pathway, it was evidenced by the up-regulation of BIP at mRNA and protein level, and the appearance of the spliced form ofXBP-1. As for PERK/eIF2α pathway, the activation of ER eIF2α kinase PERK was observed. To confirm the results from GriT-V-AS/7721 cells, the key molecules in the UPR were examined again in 7721 cells interfered with the GnT-V by the specific RNAi treatment. The results were similar with those from GnT-V-AS/7721, indicating that blocking of GnT-V can specifically activate ER stress in 7721 cells. Rate of 3H-Man incorporation corrected with rate of 3H-Leu incorporation in GnT-V-AS/7721 was down-regulated greatly compared with the control, which demonstrated the deficient function of the enzyme synthesizing N-glycans after GnT-V blocking. Moreover, the faster migrating form of chaperone GRP94 associated with the underglycosylation, and the extensively changed N-glycans structures of intracellular glycoproteins were also detected in GnT-V-AS/7721. These results supported the mechanism that blocking of GnT-V expression impaired functions of chaperones and N-glycan-synthesizing enzymes, which caused UPR in vivo.展开更多
Apoptosis induced by endoplasmic reticulum(ER)stress plays a crucial role in mediating brain damage after ischemic stroke.Recently,Hes1(hairy and enhancer of split 1)has been implicated in the regulation of ER stress,...Apoptosis induced by endoplasmic reticulum(ER)stress plays a crucial role in mediating brain damage after ischemic stroke.Recently,Hes1(hairy and enhancer of split 1)has been implicated in the regulation of ER stress,but whether it plays a functional role after ischemic stroke and the underlying mechanism remain unclear.In this study,using a mouse model of ischemic stroke via transient middle cerebral artery occlusion(tMCAO),we found that Hes1 was induced following brain injury,and that siRNA-mediated knockdown of Hes1 increased the cerebral infarction and worsened the neurological outcome,suggesting that Hes1 knockdown exacerbates ischemic stroke.In addition,mechanistically,Hes1 knockdown promoted apoptosis and activated the PERK/eIF2a/ATF4/CHOP signaling pathway after tMCAO.These results suggest that Hes1 knockdown promotes ER stress-induced apoptosis.Furthermore,inhibition of PERK with the specific inhibitor GSK2606414 markedly attenuated the Hes1 knockdown-induced apoptosis and the increased cerebral infarction as well as the worsened neurological outcome following tMCAO,implying that the protection of Hes1 against ischemic stroke is associated with the amelioration of ER stress via modulating the PERK/eIF2a/ATF4/CHOP signaling pathway.Taken together,these results unveil the detrimental role of Hes1 knockdown after ischemic stroke and further relate it to the regulation of ER stress-induced apoptosis,thus highlighting the importance of targeting ER stress in the treatment of ischemic stroke.展开更多
Parkinson's disease (PD) is a neurodegenera- tive disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic str...Parkinson's disease (PD) is a neurodegenera- tive disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic strategies that halt the neurodegenerative processes are lacking, reinforcing the need to better understand the molecular drivers of this disease. Importantly, increasing evidence suggests that the endoplasmic reticulum (ER) stress-induced unfolded protein response is likely involved in DA neuronal death. Salidroside, a major compound isolated from Rhodiola rosea L., possesses potent anti- oxidative stress properties and protects against DA neu- ronal death. However, the underlying mechanisms are not well understood. In the present study, we demonstrate that salidroside prevents 6-hydroxydopamine (6-OHDA)- induced cytotoxicity by attenuating ER stress. Further- more, treatment of a DA neuronal cell line (SN4741) and primary cortical neurons with salidroside significantly reduced neurotoxin-induced increases in cytoplasmic reactive oxygen species and calcium, both of which cause ER stress, and cleaved caspase-12, which is responsible for ER stress-induced cell death. Together, these results sug- gest that salidroside protects SN4741 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by attenuating ER stress. This provides a rationale for the investigation of salidroside as a potential therapeutic agent in animal models of PD.展开更多
文摘Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.
文摘OBJECTIVE Here we investigated the effects and the underlying mechanism of Ginkgolide K(1,10-dihydroxy-3,14-didehydroginkgolide,GK)on cardiac ER stress.METHODS Cell death,apoptosis,and ER stressrelated signalling pathwayswere measuredin cultured neonatal rat cardiomyocytes(NRCMs),treated with the ER stress inducers tunicamycin,hydrogen peroxide,and thapsigargin.Acute myocardial infarction was established using left coronary artery occlusion in mice,and infarct size was measured by triphenyltetrazolium chloride(TTC)staining.Echocardiography was used to assess heart function and transmission electron microscopy for evaluating ER expansion.RESULTS GK significantly decreased ER stress-induced cell death in both in vitro and in vivomodels.In ischemic injured mice,GK treatment reduced infarct size,rescued heart dysfunction and ameliorated ER dilation.Mechanistic studies revealed that the beneficial effects of GK occur through enhancement of inositol-requiring enzyme 1α(IRE1α)/X box-binding protein-1(XBP1)activity,which in turn leads to increased ER-associated degradation(ERAD)-mediated clearance of misfolded proteins and autophagy.In addition,GK is also able to partially repress the pro-apoptotic action of regulated IRE1-dependent decay(RIDD)and JNK pathway.CONCLUSION GK acts through selective activation of the IRE1α/XBP1 pathway to limit ER stress injury.GK is revealed as a promising therapeutic agent to ameliorate ER stress for treating cardiovascular diseases.
基金This work was supported by Natural Science Foundation of China(81660611)Guizhou Provincial Science&Technology Program(ZK[2022]615)+5 种基金the Science and Technology Project of Guizhou Provincial Health Commission(gzwkj2021-59)the Science&Technology Plan of Zunyi(ZSKHZC-HZ[2020]98)the Xin miao Foundation of Zunyi Medical University([2017]5733-055)Innovation Talent Team of Guizhou Science and Technology Department(QKHPTRC[2020]5007)Science and Technology Department of Zunyi City of Guizhou province of China([2020]7)and Innovation Talent Team of Zunyi(ZSKRC[2019]1).
文摘Cantharidin(CTD)is a bioactive ingredient isolated from Cantharis vesicatoria(blister beetles),which has potential therapeutic value as an anticancer agent.Magnesium Demethylcantharidate(MDC)is a recently developed derivative of Cantharidin(CTD),and previous studies have illustrated its excellent anticancer activity on HCC cells.However,the effect and mechanism of MDC remains unclear and need to be further studied.In particular,whether MDC can cause ER stress in HCC is still unknown.In this study,we demonstrated that endoplasmic reticulum stress(ERS)-related proteins were changed in SMMC-7721 and Bel-7402 cells after being exposed to MDC.Moreover,we found that MDC could significantly inhibit the growth of xenograft tumor in nude mice.In summary,we confirmed that MDC could induce ERS in HCC cells and thus induce apoptosis.
基金supported by the National Natural Science Foundation of China(No.81300304 and No.31271855)
文摘Fibronectin containing extra domain A(EDA~+ FN),a functional glycoprotein participating in several cellular processes,correlates with chronic liver disease.Herein,we aim to investigate the expression and secretion of EDA~+ FN from hepatocytes in nonalcoholic fatty liver disease(NAFLD) and the underlying mechanisms.Circulating levels of EDA~+ FN were determined by ELISA in clinical samples.Western blotting and flow cytometry were performed on L02 and Hep G2 cell lines to analyze whether the levels of EDA~+ FN were associated with endoplasmic reticulum(ER) stress-related cell death.Circulating levels of EDA~+ FN in NAFLD patients were significantly higher than those in control subjects,and positively related with severity of ultrasonographic steatosis score.In cultured hepatocytes,palmitate up-regulated the expression of EDA~+ FN in a dose-dependent manner.Conversely,when the cells were pretreated with 4-phenylbutyrate,a specific inhibitor of ER stress,up-regulation of EDA~+ FN could be abrogated.Moreover,silencing CHOP by sh RNA enhanced the release of EDA~+ FN from hepatocytes following palmitate treatment,which was involved in ER stress-related cell damage.These findings suggest that the up-regulated level of EDA~+ FN is associated with liver damage in NAFLD,and ER stress-mediated cell damage contributes to the release of EDA~+ FN from hepatocytes.
文摘The endoplasmic reticulum is the central organelle within a eukaryotic cell where newly synthesized proteins are processed and properly folded. An excess of unfolded or mis-folded proteins induces ER stress signalling pathways. Usually this means a pro-survival strategy for the cell, whereas under extended stress conditions the ER stress signalling pathways have a pro-apoptotic function. CK2 plays a key role in the regulation of the pro-survival as well as the proapoptotic ER stress signalling by directly modulating the activities of members of the ER stress signalling pathways by phosphorylation, regulating the expression of the key factors of the signalling pathways or binding to regulator proteins. The present review will summarize the state of the art in this new emerging field.
基金supported by Shanghai Natural Science Foundation(Grant No.14ZR1437200)Foundation of Medical Elite Personnel Training Program of Pudong New Area(Grant No.PWR12010-03)Key Disciplines and Specialties of Shanghai Pudong New Area(Grant No.PDZx2014-01)
文摘Objective:To study the protective effect of hyperoside(Hyp) on cardiac ischemia reperfusion injury and its potential mechanism.Methods:Rats were divided into two groups for the evaluation,the Hyp(50 uM Hyp;n=8) and the control group(n=8).Rat hearts were isolated and perfused with Krebs-Henseleit buffer(KHB) for 30 min.After being inhibited with cardioplegic solution,they were stored for 4 h in B21 solution at 4℃.Afterwards,rat hearts were perfused with KHB again for 45 min.In this period.Hyp was added into solutions of cardioplegia for storage and KHB.Parameters of cardiac functions,including heart rate,the systolic pressure of the left ventricle,the end-diastolic pressure of the left ventricle,the developed pressure of the left ventricle,the left-ventricular systolic pressure and the peak rise rate of the pressure of the left ventricle were recorded.The levels of adenosine triphosphate(ATP),the content of malondialdehyde and apoptotic cells were determined to evaluate the protective effect of Hyp on hearts suffered from ischemia reperfusion injury.Moreover,cultured cardiac myocytes were subjected to the process simulating ischemia/reperfusion.What were analyzed included the endoplasmic reticulum(ER) stress hallmarks expressions,such as binding immunoglobulin protein and C/EBP homologous protein,using the western blot and real-time PCR.Besides,the NF-E2-related factor 2(Nrf2) expression was measured to explore the potential mechanism.Results:Compared with the control group,the Hyp group had better cardiac functional parameters and higher ATP levels;pretreatment of Hyp greatly relieved the apoptosis of myocyte,decreased oxidative stress as well as ER stress and activated the signaling pathway of anti-oxidative Nrf2 to a further extent.Conclusions:Hyp plays an important role in preserving cardiac function by improving ATP levels of tissue,easing oxidative injury of myocardium and reducing apoptosis following IRI dramatically,while the ER stress inhibition and the downstream Nrf2 signaling activation may contribute to the effects of protection.
基金supported by National Natural Science Foundation of China(8122010802581473141)+3 种基金 NSFC-TRF collaboration projects(81561148011DBG5980001) Drug Innovation Project of SIMM(CASIMM0120154035) Personalized Medicine-Molecular Signature-based Drug Discovery and
文摘OBJECTIVE To explore the potential effect and mechanisms of protopanaxadiol deriva.tive 1-(3,4-dimethoxyphenethyl)-3-(3-dehydroxyl-20(s)-protopa-naxadiol-3 b-yl)-urea(DDPU) in the treatment of Alzheimer disease.METHODS ELISA assay was performed in both HEK293-APPswe and CHO-APP cells to demonstrate the efficacy of DDPU in reducing Ab level.SH-SY5 Y,primary neurons and astrocyte cellswereused to study the regulation of DDPU against the signaling pathways involved in Aβ/ER-stress pathology.APP/PS1 transgenic mice wereusedto study the regulation of DDPU against ADL and cognitive deficits.APP/PS1 transgenic mice were randomly placed into three groups(n=10):The two 6-month transgenic groups were administrated with 30 mg·kg^(-1) DDPU or vehicle and the 6-month non-transgenic group was administrated with vehicle for 100 days by intraperitonealinjec.tion.After 100-day administration,nest construction assay and Morris water maze(MWM) assay were applied to evaluate the daily living activities and cognitive abilities of the mice with continuous DDPU treatment.Upon completion of behavior assays,mice were euthanized,and the brains were removed and bisected in mid-sagittal plane.The right hemispheres were frozen and stored at-80°C,and the left hemispheres were fixed in 4% paraformaldehyde.RESULTS DDPU effectively improved learning and memory impairments in APP/PS1 transgenic mice,and the underlying mechanisms have been inten.sively investigated.DDPU reduced Ab production by inhibiting the PERK/eIF2 a signaling-mediated BACE1 translation,while promoted Ab clearance as a PI3K inhibitor thus negatively regulating PI3K/AKT/mTOR signaling in promotion of autophagy.Moreover,DDPU also exhibited neuroprotective effect by attenuating ER stress.Therefore,all findings have clearly demonstrated the crosstalk between Ab and ER stress,and confirmed that targeting ER stress should be a potential target for innovative anti-AD drug development,while highlighted the potential of DDPU in the treatment of AD.
基金supported by the Science and Technology Program of State Administration for Market Regulation(No.2021MK136)the Science and Technology Program of Jiangsu Market Supervision and Administration Bureau(No.KJ2022024)Jiangsu Postgraduate Research and Practice Innovation Program(No.KYCX22_0794)。
文摘Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease (IBD), may result from immune system dysfunction, leading to the sustained overproduction of reactive oxygen species (ROS) and subsequent cellular oxidative stress damage. Recent studies have identified both peroxisome proliferator-activated receptor-γ (PPARγ) and endoplasmic reticulum (ER) stress as critical targets for the treatment of IBD. Oroxyloside (C22H20O11), derived from the root of Scutellaria baicalensis Georgi, has traditionally been used in treating inflammatory diseases. In this study, we investigated the molecular mechanisms by which oroxyloside mitigates dextran sulfate sodium (DSS)-induced colitis. We examined the effects of oroxyloside on ROS-mediated ER stress in colitis, including the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP, which are associated with ER stress. The beneficial impact of oroxyloside was reversed by the PPARγ antagonist GW9662 (1 mg·kg^(−1), i.v.) in vivo. Furthermore, oroxyloside decreased pro-inflammatory cytokines and ROS production in both bone marrow-derived macrophages (BMDM) and the mouse macrophage cell line RAW 264.7. However, PPARγ siRNA transfection blocked the anti-inflammatory effect of oroxyloside and even abolished ROS generation and ER stress activation inhibited by oroxyloside in vitro. In conclusion, our study demonstrates that oroxyloside ameliorates DSS-induced colitis by inhibiting ER stress via PPARγ activation, suggesting that oroxyloside might be a promising effective agent for IBD.
基金supported by the Taishan Scholar Foundation of Shandong Province(No.tsqn202211065)Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.2021JJLH0037)+1 种基金the Natural Science Foundation of China(No.82003673)the Fundamental Research Funds for the Central Universities(No.202113049)。
文摘Early pathogenesis of ischemia-reperfusion(I/R)-induced acute kidney injury(AKI)is dominated by intracellular calcium overload,which induces oxidative stress,intracellular energy metabolism disorder,inflammatory activation,and a series of pathologic cascaded reactions that are closely intertwined with self-amplifying and interactive feedback loops,ultimately resulting in cell damage and kidney failure.Currently,most nanomedicines originate from the perspective of antioxidant stress,which can only quench existing reactive oxide species(ROS)but cannot prevent the continuous production of ROS,resulting in insufficient efficacy.As a safe and promising drug,BAPTA-AM is hydrolyzed into BAPTA by intracellular esterase upon entering cells,which can rapidly chelate with overloaded Ca^(2+),restoring intracellular calcium homeostasis,thus inhibiting ROS regeneration at the source.Here,we designed a KTP-targeting peptide-modified yolk-shell structure of liposome–poly(ethylene glycol)methyl ether-block-poly(L-lactide-co-glycolic)(mPLGA)hybrid nanoparticles(<100 nm),with the characteristics of high encapsulation rate,high colloid stability,facile modification,and prolonged blood circulation time.Once the BA/mPLGA@Lipo-KTP was targeted to the site of kidney injury,the cholesteryl hemisuccinate(CHEMS)in the phospholipid bilayer,as an acidic cholesterol ester,was protonated in the simulated inflammatory slightly acidic environment(pH 6.5),causing the liposomes to rupture and release the BA/mPLGA nanoparticles,which were then depolymerized by intracellular esterase.The BAPTA-AM was diffused and hydrolyzed to produce BAPTA,which can rapidly cut off the malignant loop of calcium overload/ROS generation at its source,blocking the endoplasmic reticulum(ER)apoptosis pathway(ATF4–CHOP–Bax/Bcl-2,Casp-12–Casp-3)and the inflammatory pathway(TNF-α–NF-κB–IL-6 axes),thus alleviating pathological changes in kidney tissue,thereby inhibiting the expression of renal tubular marker kidney injury molecule 1(Kim-1)(reduced by 82.9%)and also exhibiting prominent anti-apoptotic capability(TUNEL-positive ratio decreased from 40.2%to 8.3%),significantly restoring renal function.Overall,this research holds huge potential in the treatment of I/R injury-related diseases.
基金supported by the National Science Fund for Distinguished Young Scholars(32025029)the Shanghai Education Committee Scientific Research Innovation Projects(2101070007800120)+1 种基金the Yili Health Science Foundation of Chinese Institute of Food Science and Technology(2021-Y06)the Shanghai Engineering Research Center of food microbiology program(19DZ2281100)。
文摘Probiotics could effectively eliminate excess reactive oxygen species(ROS)generated during aging or lipid metabolism disorders,but their mechanism is unclear.The major purpose of this study was to investigate the mechanism of Lactiplantibacillus plantarun AR113 alleviating oxidative stress injury in the D-galactose induced aging mice.The result showed that pretreatment with L.plantarun AR113 significantly relieving H_(2)O_(2)induced cytotoxicity in HepG2 cells by maintain cell membrane integrity and increasing antioxidant enzyme activities.In D-galactose induced aging mice,L.plantarun AR113 could significantly attenuate liver damage and inflammatory infiltration by promoting endogenous glutathione(GSH)synthesis and activating the Nrf2/Keap1 signaling pathway in mice,and increasing the expression of regulated phaseⅡdetoxification enzymes and antioxidant enzymes.Further analysis shown that gavage of L.plantarun AR113 could significantly reduce the expression of G protein-coupled receptor 78(GPR78)and C/EBP homologous protein(CHOP)proteins,and promote the restoration of endoplasmic reticulum(ER)homeostasis,thereby activating cell anti-apoptotic pathways.These results were also confirmed in H_(2)O_(2)-treated HepG2 experiments.It indicated that L.plantarun AR113 could inhibit D-galactose-induced liver injury through dual inhibition of ER stress and oxidative stress.L.plantarun AR113 have good application potential in anti-aging and alleviating metabolic disorders.
基金supported by the National Natural Science Foundation of China(32170689,91954202,32030010)National Key Research and Development Program of China(2022YFF0712500)+1 种基金the Program of Introducing Talents of Discipline to Universities(111 Project,B13007)Beijing Forestry University Outstanding Postgraduate Mentoring Team Building(YJSY-DSTD2022005).
文摘The endoplasmic reticulum(ER)and the plasma membrane(PM)form ER–PM contact sites(EPCSs)that allow the ER and PM to exchange materials and information.Stress-induced disruption of protein folding triggers ER stress,and the cell initiates the unfolded protein response(UPR)to resist the stress.However,whether EPCSs play a role in ER stress in plants remains unclear.VESICLE-ASSOCIATED MEMBRANE PROTEIN(VAMP)-ASSOCIATED PROTEIN 27-1(VAP27-1)functions in EPCS tethering and is encoded by a family of 10 genes(VAP27-1–10)in Arabidopsis thaliana.Here,we used CRISPR-Cas9-mediated genome editing to obtain a homozygous vap27-1 vap27-3 vap27-4(vap27-1/3/4)triple mutant lacking three of the key VAP27 family members in Arabidopsis.The vap27-1/3/4 mutant exhibits defects in ER–PM connectivity and EPCS architecture,as well as excessive UPR signaling.We further showed that relocation of VAP27-1 to the PM mediates specific VAP27-1-related EPCS remodeling and expansion under ER stress.Moreover,the spatiotemporal dynamics of VAP27-1 at the PM increase ER–PM connectivity and enhance Arabidopsis resistance to ER stress.In addition,we revealed an important role for intracellular calcium homeostasis in the regulation of UPR signaling.Taken together,these results broaden our understanding of the molecular and cellular mechanisms of ER stress and UPR signaling in plants,providing additional clues for improving plant broad-spectrum resistance to different stresses.
基金This study was financially supported by grants from the National Basic Research Program of China (973 Program, 2012CB910500), the National Natural Science Foundation of China (#31171157 #31070233 #31222008), and the Shanghai Pujiang Talent Program (11PJ1400700). No conflict of interest declared.
文摘The membrane-associated transcription factor, bZlP28, is relocated from the endoplasmic reticulum (ER) to the Golgi and proteolytically released from the membrane mediated by two proteases, SlP and S2P, in response to ER stress in Arabidopsis. The activated N-terminal domain recruits nuclear factor Y (NF-Y) subunits in the nucleus to regulate ER stress downstream genes. Little is known about the functions of the bZIP28 C-terminal lumen-facing domain. Here, we provide novel insights into how the ER lumen-facing domain affects the biological function and organelle-to-organelle movement of bZIP28 in the ER stress response. First, we demonstrated the functional redundancy of bZlP28 and bZIP60 by generation and analysis of the bZIP28 and bZIP60 double mutant zip28zip60. Subsequent genetic complementation experiments in zip28zip60 background with deletions on bZlP28 lumen-facing domain highlighted the importance of lumen-facing domain for its in vivo function of bZIP28 in the ER stress response. The protein subcellular localization and Western blotting results further revealed that the bZIP28 lumen-facing domain contains ER retention signal which is important for the proteolytic activation of bZIP28. Thus, the bZIP28 lumen-facing C-terminus plays important roles in the ER-to-Golgi movement of bZlP28, which may contribute to the sensing of the ER stress.
基金supported by the National Basic Research Program(973) Grant(No.2012CB517503 and No.2011CB503903)National Natural Science Foundation of China(No.81230070 and No. 81070120) to Qi Chen+1 种基金the National Natural Science Foundation of China Grant(No.81000118) to Jingjing Benthe National Natural Science Foundation of China Grant(No.81100857) to Xiaoyu Li
文摘Macrophage death in advanced atherosclerosis promotes plaque necrosis and destabilization.Involvement of autophagy in bulk degradation of cellular components has been recognized recently as an important mechanism for cell survival under endoplasmic reticulum(ER) stress.We previously found that the engagement of class A scavenger receptor(SR-A) triggered JNK-dependent apoptosis in ER-stressed macrophages.However,pro-apoptotic mechanisms mediated by SR-A are not fully understood.Therefore,we sought to see if SR-A mediated apoptosis was associated with autophagy in macrophages.Here,we showed that fucoidan inhibited microtubule-associated protein light chain 3-phospholipid conjugates(LC3-Ⅱ) formation as well as the number of autophagosomes under ER stress.The inhibition of LC3-Ⅱ formation was paralleled by the activation of the mTOR pathway,and the inhibition of mTOR allowed LC3-Ⅱ induction in macrophages treated with thapsigargin plus fucoidan.Furthermore,apoptosis induced by fucoidan was prevented under ER stress by the mTOR inhibitor.We propose that fucoidan,a SR-A agonist,may contribute to macrophage apoptosis during ER stress by inhibiting autophagy.
基金supported by grants from the National Basic Research Program of China(973 Program,2012CB910500)the National Natural Science Foundation of China(31171157,31222008)the Specialized Research Fund for the Doctoral Program of Higher Education(20130071110011)
文摘Many sources of stress cause accumulation of unfolded or misfolded proteins in endoplasmic reticulum(ER), which elicits the unfolded protein response(UPR) to either promote cell survival or programmed cell death depending on different developmental context or stress severity. The Arabidopsis membrane-associated transcription factor, b ZIP28, is the functional equivalent of mammalian ATF6, which relocates from the ER to the Golgi where it is proteolytically processed and released from the membrane to the nucleus to mediate the UPR. Although the canonical site-1 protease(S1P) cleavage site on the ER lumen-facing domain is well conserved between b ZIP28 and ATF6, the importance of S1 P cleavage on b ZIP28 has not been experimentally demonstrated. Here we provide genetic evidence that the RRIL573 site, but not the RVLM373 site, on the lumen-facing domain of bZ IP28 is critical for the biological function of b ZIP28 under ER stress condition. Further biochemistry and cell biology studies demonstrated that the RRIL573 site, but not the RVLM373 site, is required for proteolytic processing and nuclear relocation of b ZIP28 in response to ER stress. Our results reveal that S1 P cleavage site plays a pivotal role in activation and function of b ZIP28 during UPR in plants.
文摘N-acetylglucosaminyltransferase V (GnT-V) is an important tumorigenesis and metastasis-associated enzyme. To study its biofunction, the GnT-V stably suppressed cell line (GnT-V-AS/7721) was constructed from 7721 hepatocarcinoma cells in previous study. In this study, cDNA array gene expression profiles were compared between GnT-V-AS/7721 and parental 7721 cells. The data indicated that GnT-V-AS/7721 showed a characteristic expression pattern consistent with the ER stress. The molecular mechanism of the ER stress was explored in GnT-V-AS/7721 by the analysis on key molecules in both two unfolded protein response (UPR) pathways. For ATF6 and Irel/XBP-1 pathway, it was evidenced by the up-regulation of BIP at mRNA and protein level, and the appearance of the spliced form ofXBP-1. As for PERK/eIF2α pathway, the activation of ER eIF2α kinase PERK was observed. To confirm the results from GriT-V-AS/7721 cells, the key molecules in the UPR were examined again in 7721 cells interfered with the GnT-V by the specific RNAi treatment. The results were similar with those from GnT-V-AS/7721, indicating that blocking of GnT-V can specifically activate ER stress in 7721 cells. Rate of 3H-Man incorporation corrected with rate of 3H-Leu incorporation in GnT-V-AS/7721 was down-regulated greatly compared with the control, which demonstrated the deficient function of the enzyme synthesizing N-glycans after GnT-V blocking. Moreover, the faster migrating form of chaperone GRP94 associated with the underglycosylation, and the extensively changed N-glycans structures of intracellular glycoproteins were also detected in GnT-V-AS/7721. These results supported the mechanism that blocking of GnT-V expression impaired functions of chaperones and N-glycan-synthesizing enzymes, which caused UPR in vivo.
基金supported by grants from the Guangxi Zhuang Autonomous Region Health and Family Planning Commission Science and Technology Project(Z2016419)Guangxi Natural Science Foundation Project(No.:2018JJA140853)the Science and Technology Project of Hunan Province,China(2014FJ4233).
文摘Apoptosis induced by endoplasmic reticulum(ER)stress plays a crucial role in mediating brain damage after ischemic stroke.Recently,Hes1(hairy and enhancer of split 1)has been implicated in the regulation of ER stress,but whether it plays a functional role after ischemic stroke and the underlying mechanism remain unclear.In this study,using a mouse model of ischemic stroke via transient middle cerebral artery occlusion(tMCAO),we found that Hes1 was induced following brain injury,and that siRNA-mediated knockdown of Hes1 increased the cerebral infarction and worsened the neurological outcome,suggesting that Hes1 knockdown exacerbates ischemic stroke.In addition,mechanistically,Hes1 knockdown promoted apoptosis and activated the PERK/eIF2a/ATF4/CHOP signaling pathway after tMCAO.These results suggest that Hes1 knockdown promotes ER stress-induced apoptosis.Furthermore,inhibition of PERK with the specific inhibitor GSK2606414 markedly attenuated the Hes1 knockdown-induced apoptosis and the increased cerebral infarction as well as the worsened neurological outcome following tMCAO,implying that the protection of Hes1 against ischemic stroke is associated with the amelioration of ER stress via modulating the PERK/eIF2a/ATF4/CHOP signaling pathway.Taken together,these results unveil the detrimental role of Hes1 knockdown after ischemic stroke and further relate it to the regulation of ER stress-induced apoptosis,thus highlighting the importance of targeting ER stress in the treatment of ischemic stroke.
基金supported by the National Basic Research Development Program(973 Program)of China(2011CB510000)the National Natural Science Foundation of China(31371400)
文摘Parkinson's disease (PD) is a neurodegenera- tive disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic strategies that halt the neurodegenerative processes are lacking, reinforcing the need to better understand the molecular drivers of this disease. Importantly, increasing evidence suggests that the endoplasmic reticulum (ER) stress-induced unfolded protein response is likely involved in DA neuronal death. Salidroside, a major compound isolated from Rhodiola rosea L., possesses potent anti- oxidative stress properties and protects against DA neu- ronal death. However, the underlying mechanisms are not well understood. In the present study, we demonstrate that salidroside prevents 6-hydroxydopamine (6-OHDA)- induced cytotoxicity by attenuating ER stress. Further- more, treatment of a DA neuronal cell line (SN4741) and primary cortical neurons with salidroside significantly reduced neurotoxin-induced increases in cytoplasmic reactive oxygen species and calcium, both of which cause ER stress, and cleaved caspase-12, which is responsible for ER stress-induced cell death. Together, these results sug- gest that salidroside protects SN4741 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by attenuating ER stress. This provides a rationale for the investigation of salidroside as a potential therapeutic agent in animal models of PD.