Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environme...Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.展开更多
Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl do...Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.展开更多
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec...Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.展开更多
The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centere...The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer’s disease neuropathology.The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer’s disease progression.The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus.Notably,ANK1 hypermethylation,a protein implicated in neurofibrillary tangle formation,was recurrently identified in the entorhinal cortex.Further,the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3,RHBDF2,and MCF2L,potentially influencing neuroinflammatory processes.The complex role of BIN1 in late-onset Alzheimer’s disease is underscored by its association with altered methylation patterns.Despite the disparities across studies,these findings highlight the intricate interplay between epigenetic modifications and Alzheimer’s disease pathology.Future research efforts should address methodological variations,incorporate diverse cohorts,and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer’s disease progression.展开更多
Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigat...Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.展开更多
Objective:To investigate the potential mechanism of Wendan decoction in obesity by screening target genes with promoter region methylation changes and constructing a multiple signaling pathways network based on promot...Objective:To investigate the potential mechanism of Wendan decoction in obesity by screening target genes with promoter region methylation changes and constructing a multiple signaling pathways network based on promoter methylation.Methods:The methylation degree of Itgad,Col8a1,Adra2b,Jund,Rab2a,Wnt8b,Fzd9,B4galt7,Pik3cd,Creb1,Stard8,and Mmp1 in the abdominal adipose tissue of obese rats was determined using the Agena MassARRAY system.Western blot was performed to assess protein expression levels.Target genes were identified based on the methylation degree in the promoter region and protein expression.Enrichment analysis of signaling pathways was conducted to identify relevant target genes and obtain a multiple signaling pathway network associated with obesity.Core and terminal effector molecules in the pathway networks were selected as research targets for reverse transcription-polymerase chain reaction(RT-PCR)analysis.Results:Four genes(Adra2b,Creb1,Itgad,and Pik3cd)showed a degree of promoter methylation consistent with their respective protein expression levels.Among them,Adra2b,Creb1,and Pik3cd expression increased,while that of Itgad decreased.Enrichment analysis revealed that Creb1 and Pik3cd were involved in 6 signaling pathways related to obesity:tumor necrosis factor(TNF)signaling pathway,growth hormone synthesis/secretion and action,adenosine 5'-monophosphate-activated protein kinase(AMPK)signaling pathway,relaxin signaling pathway,cyclic nucleotide(cAMP)signaling pathway,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Subsequently,a multiple signaling pathways network was constructed based on promoter methylation.Key molecules including protein kinase B(AKT),mechanistic target of rapamycin complex 1(mTORC1),and unc-51 like autophagy activating kinase 1(ULK1),as well as terminal effector molecules interleukin-1β(IL-1β),interleukin-6(IL-6),and chemokine(C-X-C motif)ligand 2(CXCL2)were selected as research targets.Wendan decoction decreased the expressions of AKT,mTORC1,IL-1β,IL-6,and CXCL2 while up-regulating ULK1 expression.Conclusion:The mechanism of Wendan decoction in preventing obesity involves the regulation of multiple signaling pathways through the control of Creb1 and Pik3cd gene promoter methylation.However,the associated multi-path gene regulation mechanism in preventing obesity is complex.Thus,further exploration is needed to elucidate the role of methylation changes in this mechanism.展开更多
BACKGROUND Colorectal cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.Syndecan-2 methylation(mSDC2)testing has emerged as a widely used biomarker for early detection of CRC in stool ...BACKGROUND Colorectal cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.Syndecan-2 methylation(mSDC2)testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.Cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.mSDC2 testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.AIM To validate the effectiveness of fecal DNA mSDC2 testing in the detection of CRC among a high-risk Chinese population to provide evidence-based data for the development of diagnostic and/or screening guidelines for CRC in China.METHODS A high-risk Chinese cohort consisting of 1130 individuals aged 40-79 years was selected for evaluation via fecal mSDC2 testing.Sensitivity and specificity for CRC,advanced adenoma(AA)and advanced colorectal neoplasia(ACN)were determined.High-risk factors for the incidence of colorectal lesions were determined and a logistic regression model was constructed to reflect the efficacy of the test.RESULTS A total of 1035 high-risk individuals were included in this study according to established criteria.Among them,16 suffered from CRC(1.55%),65 from AA(6.28%)and 189 from non-AAs(18.26%);150 patients were diagnosed with polyps(14.49%).Diagnoses were established based upon colonoscopic and pathological examinations.Sensitivities of the mSDC2 test for CRC and AA were 87.50%and 40.00%,respectively;specificities were 95.61%for other groups.Positive predictive values of the mSDC2 test for CRC,AA and ACN were 16.09%,29.89%and 45.98%,respectively;the negative predictive value for CRC was 99.79%.After adjusting for other high-risk covariates,mSDC2 test positivity was found to be a significant risk factor for the occurrence of ACN(P<0.001).CONCLUSION Our findings confirmed that offering fecal mSDC2 testing and colonoscopy in combination for CRC screening is effective for earlier detection of malignant colorectal lesions in a high-risk Chinese population.展开更多
Background: Glycine dehydrogenase(GLDC) plays an important role in the initiation and proliferation of several human cancers. In this study, we aimed to detect the methylation status of GLDC promoter and its diagnosti...Background: Glycine dehydrogenase(GLDC) plays an important role in the initiation and proliferation of several human cancers. In this study, we aimed to detect the methylation status of GLDC promoter and its diagnostic value for hepatitis B virus-associated hepatocellular carcinoma(HBV-HCC). Methods: We enrolled 197 patients, 111 with HBV-HCC, 51 with chronic hepatitis B(CHB), and 35 healthy controls(HCs). The methylation status of GLDC promoter in peripheral mononuclear cells(PBMCs) was identified by methylation specific polymerase chain reaction(MSP). The mRNA expression was examined using real-time quantitative polymerase chain reaction(q PCR). Results: The methylation frequency of the GLDC promoter was significantly lower in HBV-HCC patients(27.0%) compared to that in CHB patients(68.6%) and HCs(74.3%)( P < 0.001). The methylated group had lower alanine aminotransferase level( P = 0.035) and lower rates of tumor node metastasis(TNM) Ⅲ/Ⅳ( P = 0.043) and T3/T4( P = 0.026). TNM stage was identified to be an independent factor for GLDC promoter methylation. GLDC mRNA levels in CHB patients and HCs were significantly lower than those in HBV-HCC patients( P = 0.022 and P < 0.001, respectively). GLDC mRNA levels were significantly higher in HBV-HCC patients with unmethylated GLDC promoters than those with methylated GLDC promoters( P = 0.003). The diagnostic accuracy of alpha-fetoprotein(AFP) combined with GLDC promoter methylation for HBV-HCC was improved compared with that of AFP alone(AUC: 0.782 vs. 0.630, P < 0.001). In addition, GLDC promoter methylation was an independent predictor for overall survival of HBV-HCC patients( P = 0.038). Conclusions: The methylation frequency of GLDC promoter was lower in PBMCs from HBV-HCC patients than that from patients with CHB and HCs. The combination of AFP and GLDC promoter hypomethylation significantly improved the diagnostic accuracy of HBV-HCC.展开更多
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge...The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.展开更多
●AIM:To identify the differential methylation sites(DMS)and their according genes associated with diabetic retinopathy(DR)development in type 1 diabetes(T1DM)children.●METHODS:This study consists of two surveys.A to...●AIM:To identify the differential methylation sites(DMS)and their according genes associated with diabetic retinopathy(DR)development in type 1 diabetes(T1DM)children.●METHODS:This study consists of two surveys.A total of 40 T1DM children was included in the first survey.Because no participant has DR,retina thinning was used as a surrogate indicator for DR.The lowest 25%participants with the thinnest macular retinal thickness were included into the case group,and the others were controls.The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay,and compared between the case and control groups.Four DMS with a potential role in diabetes were identified.The second survey included 27 T1DM children,among which four had DR.The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing.●RESULTS:In the first survey,the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls(|Δβ|>0.1 and Adj.P<0.05),and 328 of these were identified with a significance of Adj.P<0.01.Among these,319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls.Pyrosequencing revealed that the transcription elongation regulator 1 like(TCERG1L,cg07684215)gene was hypermethylated in the four T1DM children with DR(P=0.018),which was consistent with the result from the first survey.The methylation status of the other three DMS(cg26389052,cg25192647,and cg05413694)showed no difference(all P>0.05)between participants with and without DR.●CONCLUSION:The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.展开更多
Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposur...Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposure levels.Methods Participants were divided into categories based on median water iodine(MWI)concentrations: iodine-fortified areas(IFA, MWI < 10 μg/L), iodine-adequate areas(IAA, 40 ≤ MWI ≤ 100μg/L), and iodine-excessive areas(IEA, MWI > 300 μg/L). A total of 176 matched AIT cases and controls were recruited and divided into 89, 40, and 47 pairs for IFA, IAA, and IEA, respectively. DMGs were identified using 850K Bead Chip analysis for 10/10 paired samples. Validation of DNA methylation and m RNA expression levels of the DMGs was conducted using Methyl Target^(TM) and QRT-PCR for 176/176paired samples.Results KLRC1, KLRC3, and SH2D1B were identified as significant DMGs. Validation revealed that KLRC1 was hypomethylated and highly expressed, whereas KLRC3 was hypermethylated and highly expressed in individuals with AIT. Furthermore, KLRC1 was hypomethylated and highly expressed in both IFA and IEA.Conclusion The DNA methylation status of KLRC1 and KLRC3 may play crucial roles in AIT pathogenesis. Additionally, DNA methylation of KLRC1 seems to be influenced by different iodine concentrations in water.展开更多
Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,...Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.展开更多
BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric can...BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.展开更多
Objective: To detect the aberrant methylation patterns in the CpG islands of p16 and p15 tumor suppressor genes, and to analyze its correlation with pancreatic carcinogenesis and with clinicopathological characterist...Objective: To detect the aberrant methylation patterns in the CpG islands of p16 and p15 tumor suppressor genes, and to analyze its correlation with pancreatic carcinogenesis and with clinicopathological characteristics of patients with pancreatic cancer (PC). Methods: The methylation-specific polymerase chain reaction (MSP) method was used to monitor methylation patterns in the CpG islands of p15 and p16 genes from 29 cases of PC and 3 cases of chronic pancreatitis (CP) paraffin-embedded tissue, as well as 2 cases of normal liver tissues and 12 cases of normal blood samples. Results: p15 and p16 genes were detected to show unmethylation patterns and no amplification using methylation-specific primers in control group. The aberrant methylation rates of p16 in carcinoma tissue and adjacent noncarcinoma tissue were 37.9% (11 of 29 cases) and 34.5% (10 of 29 cases) respectively. Of the 11 aberrant methylated samples, 5 showed complete methylation and 6 hemimethylation. The methylation rates of p15 gene in carcinoma tissue and adjacent noncarcinoma tissue were 27.5% (8/29) and 24.4% (7/29) respectively. Of the 8 aberrant methylated samples, 3 showed complete methylation and 5 hemimethylation. In 6 PC samples, aberrant methylation in CpG islands of both p15 and p16 genes existed simultaneously. The aberrant methylation patterns in CpG islands of p15 and p16 genes had no close correlation with the clinicopathological characteristics (age, sex, smoking, volume of primary tumor, differentiation, clinical stage and histological classification) of the patients with PC (P〉0.05). Conclusion: The aberrant methylation in CpG islands of p15 and p16 genes could be regarded as an early molecular event in PC and had no close correlation with the clinicopathological characteristics of the patients with PC.展开更多
OBJECTIVE To explore the relationship between the methylation status of the promoter 5'CpG island region and the biological behavior of human colorectal cancer RKO cells in vitro. METHODS RKO cells were treated with ...OBJECTIVE To explore the relationship between the methylation status of the promoter 5'CpG island region and the biological behavior of human colorectal cancer RKO cells in vitro. METHODS RKO cells were treated with a selective DNA methyltransferase inhibitor-5-aza-2'-deoxycytidine (5-aza-CdR) for 72 h. Methylationspecific PCR (MSP), T-A cloning and DNA sequence analysis were used to determinate the 5'CpG island methylation status of the p16/CDKN2 tumor suppressor gene. Cell growth, morphological changes and apoptosis were analyzed by the MTT assay, flow cytometry, fluorescence staining and electron microscopy. RESULTS The 5'CpG island of the p16/CDKN2 tumor suppressor gene in RKO cells was a typically hypermethylated. The DNA methyltransferase inhibitor (5-Aza-CdR) effectively reversed the hypermethylation status of the promoter region. With demethylation, RKO cell growth was suppressed, the cells doubling times were prolonged (P〈0.01) and apoptosis was induced, which showed a relationship. CONCLUSION A selective DNA methyltransferase (DNMT) inhibitor can inhibit proliferation by demethylation in 5'CpG islands, and may be a potential new therapy target for colorectal cancer.展开更多
Objective: To evaluate the clinical significance of the aberrant methylation of DAPK gene and p16 gene in sera from 65 NSCLC patients from Nanjing General Hospital of Nanjing Command, China. Methods: A methylation-s...Objective: To evaluate the clinical significance of the aberrant methylation of DAPK gene and p16 gene in sera from 65 NSCLC patients from Nanjing General Hospital of Nanjing Command, China. Methods: A methylation-specific PCR (MSP) was performed for the detection of promoter hypermethylation of DAPK gene and p16 gene in blood DNA from 65 cases of NSCLC, and to analyze the relation of the aberrant methylation of DAPK gene and p16 gene and the clinicopathological data. Results: 30.8% (20/65) of the sera from 65 cases of NSCLC showed hypermethylation for DAPK promoter and 43.1% (28/65) the same for p16 promoter, whereas no methylated DAPK gene promoter and p16 gene promoter were found in sera from the patients with lung benign diseases and normal controls. Methylated DAPK gene promoter and p16 gene promoter in sera were not closely correlated with the pathological classification, stage, metastasis and differentiation in NSCLC. Conclusion: Detection of the aberrant methylation of DAPK gene and p16 gene in blood DNA from NSCLC patients might offer an effective means for the earlier auxiliary diagnosis of the malignancy.展开更多
[Objective] This study aimed to investigate the methylation levels of exogenous genes and promoters and the differences of protein expression in transgenic sheep obtained by different transgenic technologies. [Method]...[Objective] This study aimed to investigate the methylation levels of exogenous genes and promoters and the differences of protein expression in transgenic sheep obtained by different transgenic technologies. [Method] Exogenous genes eGFP (enhanced green fluorescent protein) and FGF5 (fibroblast growth factor 5) were separately transformed into sheep by somatic cell cloning, stem cell cloning and perivitelline injection to obtain transgenic sheep, with CMV as the promoter. Bisulfite sequencing method was adopted to detect the methylation status of the promoter region and coding region of exogenous genes in tail tissues of transgenic sheep. Western blot was adopted to detect the expression level of exogenous genes. [Result] The methylation level of the promoter region with stem cell cloning was the highest, followed by somatic cell cloning, while that with perivitelline injection was the lowest; the methylation level of the eGFP coding region with perivitelline injection was the highest, followed by stem cell cloning; the methylation level of the FGF5 coding region with somatic cell cloning was higher than that with perivitelline injection. The exogenous protein expression level was negatively correlated with the methylation level of the promoter region. [Conclusion] This study indicates that different transgenic methods may influence the methylation level of exogenous genes, thus affecting exogenous gene expression.展开更多
Objective: To evaluate the expression of p16INK4A gene in ovarian cancer and analyze the relation between this alteration and the promoter methylation of p16INK4A DNA. Methods: Seven ovarian cancer cell lines and ei...Objective: To evaluate the expression of p16INK4A gene in ovarian cancer and analyze the relation between this alteration and the promoter methylation of p16INK4A DNA. Methods: Seven ovarian cancer cell lines and eighteen ovarian cancer specimens were selected for the study. Genomic DNA and RNA were extracted from fresh tissues and cell lines, DNA was treated with sodium bisulfite and then analyzed with methylation-specific PCR (MSP) to detect p16INK4A methylation. The expression of p16INK4A mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR). In addition, the proliferation of methylated cell lines before and after treatment of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) was examined with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay in vivo. Results: Compared with the control, the expression of p16INK4A mRNA decreased significantly or absolutely defaulted in 10 of 18 (55.56%) ovarian cancer specimens and 71.4% (5/7) ovarian cancer cell lines (P〈0.05), and the expression of p16INK4A protein also decreased (P〈0.05). The decrease of p16INK4A was due, in part, to p16INK4A methylation, which was found in the first exon of three cell lines and six ovarian cancer specimens and the rate was 42.86% and 33.33% in ovarian cancer cell lines and specimens respectively. All the methylated cells and tissues showed expression defect of p16INK4A, but the treatment of 5-ADC reactivated the expression of p16INK4A in methylated cells and decreased the proliferation of tumor cells in vitro and in vivo. Conclusion: The expression defect of p16INK4A gene possibly has an important role in the development of ovarian cancer, and this alteration is due, in part, to the methylation of the first exon in p16INK4A.展开更多
The synthesis of anisole by vapor phase methylation of phenol with methanol over activated alumina(AA) supported catalysts was investigated in a fixed bed reactor. KH2PO4/AA gave the best performance among the eight...The synthesis of anisole by vapor phase methylation of phenol with methanol over activated alumina(AA) supported catalysts was investigated in a fixed bed reactor. KH2PO4/AA gave the best performance among the eight tested catalysts. The catalyst was prepared by loading KH2PO4 on AA and then calcining at the optimized temperature of 700 °C for 8 h. In the vapor phase reaction, the level of anisole yield(LAY) has a maximum at 400–450 °C when the temperature varied from 300 to 500°C, which decreased slightly with increasing WHSV and increased distinctly with increasing mole fraction of methanol. On comparing O‐methylation and C‐methylation of phenol, a low temperature,high WHSV(short residence time), and a low methanol concentration over the KH2PO4/AA catalyst with higher K contents were found to increase anisole selectivity by O‐methylation of phenol. The reaction routes to the major products and the catalytic mechanism were suggested, and a ‘K‐acid'bifunctional process may be a critical factor to the formation of anisole.展开更多
Periodic density functional theory was applied to investigate the reaction mechanism for the methylation of toluene with methanol over HZSM-5.The results indicated that toluene could be methylated at its para,meta,ort...Periodic density functional theory was applied to investigate the reaction mechanism for the methylation of toluene with methanol over HZSM-5.The results indicated that toluene could be methylated at its para,meta,ortho and geminal positions via a concerted or stepwise pathway.For the concerted pathway,the calculated free energy barriers for the para,meta,ortho and geminal methylation reactions were 167,138,139 and 183 kJ/mol,respectively.For the stepwise pathway,the dehydration of methanol was found to be the rate-determining step with a free energy barrier of145 kj/mol,whereas the free energy barriers for the methylation of toluene at its para,meta,ortho and geminal positions were 127,105,106 and 114 kj/mol,respectively.Both pathways led to the formation of C8H11^+ species as important intermediates,which could back-donate a proton to the zeolite framework via a reorientation process or form gaseous products through demethylation.Methane was formed via an intramolecular hydrogen transfer reaction from a ring carbon of the C8H11^+ species to the carbon of the methyl group,with calculated energy barriers of 136,132 and134 kj/mol for the para,meta and ortho C8H11^+ species,respectively.The calculated free energy barriers for the formation of para-,meta- and ortho-xylene indicated that the formation of the para-xylene had the highest energy barrier for both pathways.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82271283(to XC),91854115(to JW),31970044(to JW)the Natural Science Foundation of Beijing,No.7202001(to XC)the Scientific Research Project of Beijing Educational Committee,No.KM202010005022(to XC)。
文摘Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
基金This work was supported by Sichuan Provincial Science Fund for Distinguished Young Scholars(Grant No.2020JDJQ0041)CARS-35 and Sichuan Key Science and Technology Project(NO.2021ZDZX0009).
文摘Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.
基金supported by the National Natural Science Foundation of China,No.82171270 (to ZL)Public Service Platform for Artificial In telligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1 (to ZL)+3 种基金the Natural Science Foundation of Beijing,No.Z200016 (to ZL)Beijing Talents Project,No.2018000021223ZK03 (to ZL)Beijing Municipal Committee of Science and Technology,No.Z201 100005620010 (to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029 (to YongW)。
文摘Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
文摘The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer’s disease neuropathology.The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer’s disease progression.The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus.Notably,ANK1 hypermethylation,a protein implicated in neurofibrillary tangle formation,was recurrently identified in the entorhinal cortex.Further,the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3,RHBDF2,and MCF2L,potentially influencing neuroinflammatory processes.The complex role of BIN1 in late-onset Alzheimer’s disease is underscored by its association with altered methylation patterns.Despite the disparities across studies,these findings highlight the intricate interplay between epigenetic modifications and Alzheimer’s disease pathology.Future research efforts should address methodological variations,incorporate diverse cohorts,and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer’s disease progression.
基金partially supported by the United States Department of Agriculture National Institute of Food and Agriculture Hatch Grant (Project No.OHO01304)。
文摘Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.
基金supported by the National Natural Science Foundation of China(81960851)Jiangxi Natural Science Foundation(20202BABL206132)Key Research Office of Traditional Chinese Medicine Syndrome Foundation of Jiangxi Administration of Traditional Chinese Medicine(8-4),and Science and Technology Innovation Team Development Program of Jiangxi University of Chinese Medicine(CXTD22016).
文摘Objective:To investigate the potential mechanism of Wendan decoction in obesity by screening target genes with promoter region methylation changes and constructing a multiple signaling pathways network based on promoter methylation.Methods:The methylation degree of Itgad,Col8a1,Adra2b,Jund,Rab2a,Wnt8b,Fzd9,B4galt7,Pik3cd,Creb1,Stard8,and Mmp1 in the abdominal adipose tissue of obese rats was determined using the Agena MassARRAY system.Western blot was performed to assess protein expression levels.Target genes were identified based on the methylation degree in the promoter region and protein expression.Enrichment analysis of signaling pathways was conducted to identify relevant target genes and obtain a multiple signaling pathway network associated with obesity.Core and terminal effector molecules in the pathway networks were selected as research targets for reverse transcription-polymerase chain reaction(RT-PCR)analysis.Results:Four genes(Adra2b,Creb1,Itgad,and Pik3cd)showed a degree of promoter methylation consistent with their respective protein expression levels.Among them,Adra2b,Creb1,and Pik3cd expression increased,while that of Itgad decreased.Enrichment analysis revealed that Creb1 and Pik3cd were involved in 6 signaling pathways related to obesity:tumor necrosis factor(TNF)signaling pathway,growth hormone synthesis/secretion and action,adenosine 5'-monophosphate-activated protein kinase(AMPK)signaling pathway,relaxin signaling pathway,cyclic nucleotide(cAMP)signaling pathway,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Subsequently,a multiple signaling pathways network was constructed based on promoter methylation.Key molecules including protein kinase B(AKT),mechanistic target of rapamycin complex 1(mTORC1),and unc-51 like autophagy activating kinase 1(ULK1),as well as terminal effector molecules interleukin-1β(IL-1β),interleukin-6(IL-6),and chemokine(C-X-C motif)ligand 2(CXCL2)were selected as research targets.Wendan decoction decreased the expressions of AKT,mTORC1,IL-1β,IL-6,and CXCL2 while up-regulating ULK1 expression.Conclusion:The mechanism of Wendan decoction in preventing obesity involves the regulation of multiple signaling pathways through the control of Creb1 and Pik3cd gene promoter methylation.However,the associated multi-path gene regulation mechanism in preventing obesity is complex.Thus,further exploration is needed to elucidate the role of methylation changes in this mechanism.
基金Supported by the Science and Technology Program of Panyu Central Hospital,No.PY-2023-003the Science and Technology Program of Panyu,No.2020-Z04-054+4 种基金the Science and Technology Project of the Guangzhou Health Commission,No.20211A011114the Science and Technology Program of Guangzhou,No.202002020023the General University Youth Innovative Talent Project of Guangdong Province,No.2022KQNCX281the Guangdong Provincial Key Field Special Project for Ordinary Colleges and Universities,No.2023ZDZX2097the Foshan Engineering Technology Research Center for Prepared Food Processing and Quality Evaluation,No.2022-KJZX113.
文摘BACKGROUND Colorectal cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.Syndecan-2 methylation(mSDC2)testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.Cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.mSDC2 testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.AIM To validate the effectiveness of fecal DNA mSDC2 testing in the detection of CRC among a high-risk Chinese population to provide evidence-based data for the development of diagnostic and/or screening guidelines for CRC in China.METHODS A high-risk Chinese cohort consisting of 1130 individuals aged 40-79 years was selected for evaluation via fecal mSDC2 testing.Sensitivity and specificity for CRC,advanced adenoma(AA)and advanced colorectal neoplasia(ACN)were determined.High-risk factors for the incidence of colorectal lesions were determined and a logistic regression model was constructed to reflect the efficacy of the test.RESULTS A total of 1035 high-risk individuals were included in this study according to established criteria.Among them,16 suffered from CRC(1.55%),65 from AA(6.28%)and 189 from non-AAs(18.26%);150 patients were diagnosed with polyps(14.49%).Diagnoses were established based upon colonoscopic and pathological examinations.Sensitivities of the mSDC2 test for CRC and AA were 87.50%and 40.00%,respectively;specificities were 95.61%for other groups.Positive predictive values of the mSDC2 test for CRC,AA and ACN were 16.09%,29.89%and 45.98%,respectively;the negative predictive value for CRC was 99.79%.After adjusting for other high-risk covariates,mSDC2 test positivity was found to be a significant risk factor for the occurrence of ACN(P<0.001).CONCLUSION Our findings confirmed that offering fecal mSDC2 testing and colonoscopy in combination for CRC screening is effective for earlier detection of malignant colorectal lesions in a high-risk Chinese population.
基金This study was supported by grants from the Key Project of the Chinese Ministry of Science and Technology(2017ZX102022022)National Key Research and Development Program of China(2021YFC2301801).
文摘Background: Glycine dehydrogenase(GLDC) plays an important role in the initiation and proliferation of several human cancers. In this study, we aimed to detect the methylation status of GLDC promoter and its diagnostic value for hepatitis B virus-associated hepatocellular carcinoma(HBV-HCC). Methods: We enrolled 197 patients, 111 with HBV-HCC, 51 with chronic hepatitis B(CHB), and 35 healthy controls(HCs). The methylation status of GLDC promoter in peripheral mononuclear cells(PBMCs) was identified by methylation specific polymerase chain reaction(MSP). The mRNA expression was examined using real-time quantitative polymerase chain reaction(q PCR). Results: The methylation frequency of the GLDC promoter was significantly lower in HBV-HCC patients(27.0%) compared to that in CHB patients(68.6%) and HCs(74.3%)( P < 0.001). The methylated group had lower alanine aminotransferase level( P = 0.035) and lower rates of tumor node metastasis(TNM) Ⅲ/Ⅳ( P = 0.043) and T3/T4( P = 0.026). TNM stage was identified to be an independent factor for GLDC promoter methylation. GLDC mRNA levels in CHB patients and HCs were significantly lower than those in HBV-HCC patients( P = 0.022 and P < 0.001, respectively). GLDC mRNA levels were significantly higher in HBV-HCC patients with unmethylated GLDC promoters than those with methylated GLDC promoters( P = 0.003). The diagnostic accuracy of alpha-fetoprotein(AFP) combined with GLDC promoter methylation for HBV-HCC was improved compared with that of AFP alone(AUC: 0.782 vs. 0.630, P < 0.001). In addition, GLDC promoter methylation was an independent predictor for overall survival of HBV-HCC patients( P = 0.038). Conclusions: The methylation frequency of GLDC promoter was lower in PBMCs from HBV-HCC patients than that from patients with CHB and HCs. The combination of AFP and GLDC promoter hypomethylation significantly improved the diagnostic accuracy of HBV-HCC.
文摘The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.
基金Supported by the National Key Research and Development Program of China(No.2016YFC0904800)National Natural Science Foundation of China(No.82101181)+1 种基金China Scholarship Council(No.201506230096)Shanghai Sailing Program(No.19YF1439700).
文摘●AIM:To identify the differential methylation sites(DMS)and their according genes associated with diabetic retinopathy(DR)development in type 1 diabetes(T1DM)children.●METHODS:This study consists of two surveys.A total of 40 T1DM children was included in the first survey.Because no participant has DR,retina thinning was used as a surrogate indicator for DR.The lowest 25%participants with the thinnest macular retinal thickness were included into the case group,and the others were controls.The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay,and compared between the case and control groups.Four DMS with a potential role in diabetes were identified.The second survey included 27 T1DM children,among which four had DR.The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing.●RESULTS:In the first survey,the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls(|Δβ|>0.1 and Adj.P<0.05),and 328 of these were identified with a significance of Adj.P<0.01.Among these,319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls.Pyrosequencing revealed that the transcription elongation regulator 1 like(TCERG1L,cg07684215)gene was hypermethylated in the four T1DM children with DR(P=0.018),which was consistent with the result from the first survey.The methylation status of the other three DMS(cg26389052,cg25192647,and cg05413694)showed no difference(all P>0.05)between participants with and without DR.●CONCLUSION:The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.
基金supported by National Natural Science Foundation of China,82073490.
文摘Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposure levels.Methods Participants were divided into categories based on median water iodine(MWI)concentrations: iodine-fortified areas(IFA, MWI < 10 μg/L), iodine-adequate areas(IAA, 40 ≤ MWI ≤ 100μg/L), and iodine-excessive areas(IEA, MWI > 300 μg/L). A total of 176 matched AIT cases and controls were recruited and divided into 89, 40, and 47 pairs for IFA, IAA, and IEA, respectively. DMGs were identified using 850K Bead Chip analysis for 10/10 paired samples. Validation of DNA methylation and m RNA expression levels of the DMGs was conducted using Methyl Target^(TM) and QRT-PCR for 176/176paired samples.Results KLRC1, KLRC3, and SH2D1B were identified as significant DMGs. Validation revealed that KLRC1 was hypomethylated and highly expressed, whereas KLRC3 was hypermethylated and highly expressed in individuals with AIT. Furthermore, KLRC1 was hypomethylated and highly expressed in both IFA and IEA.Conclusion The DNA methylation status of KLRC1 and KLRC3 may play crucial roles in AIT pathogenesis. Additionally, DNA methylation of KLRC1 seems to be influenced by different iodine concentrations in water.
文摘Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.
基金Supported by the Sub-Project of the National Key Research and Development Program,No.2021YFC2600263.
文摘BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.
文摘Objective: To detect the aberrant methylation patterns in the CpG islands of p16 and p15 tumor suppressor genes, and to analyze its correlation with pancreatic carcinogenesis and with clinicopathological characteristics of patients with pancreatic cancer (PC). Methods: The methylation-specific polymerase chain reaction (MSP) method was used to monitor methylation patterns in the CpG islands of p15 and p16 genes from 29 cases of PC and 3 cases of chronic pancreatitis (CP) paraffin-embedded tissue, as well as 2 cases of normal liver tissues and 12 cases of normal blood samples. Results: p15 and p16 genes were detected to show unmethylation patterns and no amplification using methylation-specific primers in control group. The aberrant methylation rates of p16 in carcinoma tissue and adjacent noncarcinoma tissue were 37.9% (11 of 29 cases) and 34.5% (10 of 29 cases) respectively. Of the 11 aberrant methylated samples, 5 showed complete methylation and 6 hemimethylation. The methylation rates of p15 gene in carcinoma tissue and adjacent noncarcinoma tissue were 27.5% (8/29) and 24.4% (7/29) respectively. Of the 8 aberrant methylated samples, 3 showed complete methylation and 5 hemimethylation. In 6 PC samples, aberrant methylation in CpG islands of both p15 and p16 genes existed simultaneously. The aberrant methylation patterns in CpG islands of p15 and p16 genes had no close correlation with the clinicopathological characteristics (age, sex, smoking, volume of primary tumor, differentiation, clinical stage and histological classification) of the patients with PC (P〉0.05). Conclusion: The aberrant methylation in CpG islands of p15 and p16 genes could be regarded as an early molecular event in PC and had no close correlation with the clinicopathological characteristics of the patients with PC.
文摘OBJECTIVE To explore the relationship between the methylation status of the promoter 5'CpG island region and the biological behavior of human colorectal cancer RKO cells in vitro. METHODS RKO cells were treated with a selective DNA methyltransferase inhibitor-5-aza-2'-deoxycytidine (5-aza-CdR) for 72 h. Methylationspecific PCR (MSP), T-A cloning and DNA sequence analysis were used to determinate the 5'CpG island methylation status of the p16/CDKN2 tumor suppressor gene. Cell growth, morphological changes and apoptosis were analyzed by the MTT assay, flow cytometry, fluorescence staining and electron microscopy. RESULTS The 5'CpG island of the p16/CDKN2 tumor suppressor gene in RKO cells was a typically hypermethylated. The DNA methyltransferase inhibitor (5-Aza-CdR) effectively reversed the hypermethylation status of the promoter region. With demethylation, RKO cell growth was suppressed, the cells doubling times were prolonged (P〈0.01) and apoptosis was induced, which showed a relationship. CONCLUSION A selective DNA methyltransferase (DNMT) inhibitor can inhibit proliferation by demethylation in 5'CpG islands, and may be a potential new therapy target for colorectal cancer.
基金This project was supported by grants from the Scientific Research Foundation of Nanjing General Hospital of Nanjing Command (No. 2003017).
文摘Objective: To evaluate the clinical significance of the aberrant methylation of DAPK gene and p16 gene in sera from 65 NSCLC patients from Nanjing General Hospital of Nanjing Command, China. Methods: A methylation-specific PCR (MSP) was performed for the detection of promoter hypermethylation of DAPK gene and p16 gene in blood DNA from 65 cases of NSCLC, and to analyze the relation of the aberrant methylation of DAPK gene and p16 gene and the clinicopathological data. Results: 30.8% (20/65) of the sera from 65 cases of NSCLC showed hypermethylation for DAPK promoter and 43.1% (28/65) the same for p16 promoter, whereas no methylated DAPK gene promoter and p16 gene promoter were found in sera from the patients with lung benign diseases and normal controls. Methylated DAPK gene promoter and p16 gene promoter in sera were not closely correlated with the pathological classification, stage, metastasis and differentiation in NSCLC. Conclusion: Detection of the aberrant methylation of DAPK gene and p16 gene in blood DNA from NSCLC patients might offer an effective means for the earlier auxiliary diagnosis of the malignancy.
基金Supported by National Natural Science Foundation of China (U1203381)Science and Technology Project of Xinjiang Uygur Autonomous Region (201111113)Science and Technology Support Project of Xinjiang Uygur Autonomous Region (201291147)~~
文摘[Objective] This study aimed to investigate the methylation levels of exogenous genes and promoters and the differences of protein expression in transgenic sheep obtained by different transgenic technologies. [Method] Exogenous genes eGFP (enhanced green fluorescent protein) and FGF5 (fibroblast growth factor 5) were separately transformed into sheep by somatic cell cloning, stem cell cloning and perivitelline injection to obtain transgenic sheep, with CMV as the promoter. Bisulfite sequencing method was adopted to detect the methylation status of the promoter region and coding region of exogenous genes in tail tissues of transgenic sheep. Western blot was adopted to detect the expression level of exogenous genes. [Result] The methylation level of the promoter region with stem cell cloning was the highest, followed by somatic cell cloning, while that with perivitelline injection was the lowest; the methylation level of the eGFP coding region with perivitelline injection was the highest, followed by stem cell cloning; the methylation level of the FGF5 coding region with somatic cell cloning was higher than that with perivitelline injection. The exogenous protein expression level was negatively correlated with the methylation level of the promoter region. [Conclusion] This study indicates that different transgenic methods may influence the methylation level of exogenous genes, thus affecting exogenous gene expression.
基金This work was supported by grant from the National Natural Science Foundation of China (No. 30070786)as well as Scientific and Technological Development Plan of Hubei Province of China
文摘Objective: To evaluate the expression of p16INK4A gene in ovarian cancer and analyze the relation between this alteration and the promoter methylation of p16INK4A DNA. Methods: Seven ovarian cancer cell lines and eighteen ovarian cancer specimens were selected for the study. Genomic DNA and RNA were extracted from fresh tissues and cell lines, DNA was treated with sodium bisulfite and then analyzed with methylation-specific PCR (MSP) to detect p16INK4A methylation. The expression of p16INK4A mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR). In addition, the proliferation of methylated cell lines before and after treatment of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) was examined with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay in vivo. Results: Compared with the control, the expression of p16INK4A mRNA decreased significantly or absolutely defaulted in 10 of 18 (55.56%) ovarian cancer specimens and 71.4% (5/7) ovarian cancer cell lines (P〈0.05), and the expression of p16INK4A protein also decreased (P〈0.05). The decrease of p16INK4A was due, in part, to p16INK4A methylation, which was found in the first exon of three cell lines and six ovarian cancer specimens and the rate was 42.86% and 33.33% in ovarian cancer cell lines and specimens respectively. All the methylated cells and tissues showed expression defect of p16INK4A, but the treatment of 5-ADC reactivated the expression of p16INK4A in methylated cells and decreased the proliferation of tumor cells in vitro and in vivo. Conclusion: The expression defect of p16INK4A gene possibly has an important role in the development of ovarian cancer, and this alteration is due, in part, to the methylation of the first exon in p16INK4A.
基金supported by the National Natural Science Foundation of China(51476180)the National Basic Research Program of China(973Program2014CB744304)~~
文摘The synthesis of anisole by vapor phase methylation of phenol with methanol over activated alumina(AA) supported catalysts was investigated in a fixed bed reactor. KH2PO4/AA gave the best performance among the eight tested catalysts. The catalyst was prepared by loading KH2PO4 on AA and then calcining at the optimized temperature of 700 °C for 8 h. In the vapor phase reaction, the level of anisole yield(LAY) has a maximum at 400–450 °C when the temperature varied from 300 to 500°C, which decreased slightly with increasing WHSV and increased distinctly with increasing mole fraction of methanol. On comparing O‐methylation and C‐methylation of phenol, a low temperature,high WHSV(short residence time), and a low methanol concentration over the KH2PO4/AA catalyst with higher K contents were found to increase anisole selectivity by O‐methylation of phenol. The reaction routes to the major products and the catalytic mechanism were suggested, and a ‘K‐acid'bifunctional process may be a critical factor to the formation of anisole.
基金supported by the National Natural Science Foundation of China(21446003)the Specialized Research Fund for the Doctoral Program of Higher Education(20130074110018)~~
文摘Periodic density functional theory was applied to investigate the reaction mechanism for the methylation of toluene with methanol over HZSM-5.The results indicated that toluene could be methylated at its para,meta,ortho and geminal positions via a concerted or stepwise pathway.For the concerted pathway,the calculated free energy barriers for the para,meta,ortho and geminal methylation reactions were 167,138,139 and 183 kJ/mol,respectively.For the stepwise pathway,the dehydration of methanol was found to be the rate-determining step with a free energy barrier of145 kj/mol,whereas the free energy barriers for the methylation of toluene at its para,meta,ortho and geminal positions were 127,105,106 and 114 kj/mol,respectively.Both pathways led to the formation of C8H11^+ species as important intermediates,which could back-donate a proton to the zeolite framework via a reorientation process or form gaseous products through demethylation.Methane was formed via an intramolecular hydrogen transfer reaction from a ring carbon of the C8H11^+ species to the carbon of the methyl group,with calculated energy barriers of 136,132 and134 kj/mol for the para,meta and ortho C8H11^+ species,respectively.The calculated free energy barriers for the formation of para-,meta- and ortho-xylene indicated that the formation of the para-xylene had the highest energy barrier for both pathways.