The B3 transcription factors(TFs)in plants play vital roles in numerous biological processes.Although B3 genes have been broadly identified in many plants,little is known about their potential functions in mediating s...The B3 transcription factors(TFs)in plants play vital roles in numerous biological processes.Although B3 genes have been broadly identified in many plants,little is known about their potential functions in mediating seed development and material accumulation.Castor bean(Ricinus communis)is a non-edible oilseed crop considered an ideal model system for seed biology research.Here,we identified a total of 61 B3 genes in the castor bean genome,which can be classified into five subfamilies,including ABI3/VP1,HSI,ARF,RAV and REM.The expression profiles revealed that RcABI3/VP1 subfamily genes are significantly up-regulated in the middle and later stages of seed development,indicating that these genes may be associated with the accumulation of storage oils.Furthermore,through yeast one-hybrid and tobacco transient expression assays,we detected that ABI3/VP1 subfamily member RcLEC2 directly regulates the transcription of RcOleosin2,which encodes an oil-body structural protein.This finding suggests that RcLEC2,as a seed-specific TF,may be involved in the regulation of storage materials accumulation.This study provides novel insights into the potential roles and molecular basis of B3 family proteins in seed development and material accumulation.展开更多
Obesity is a major human health problem associated with various diseases, including cardiac injury and type 2 diabetes. Trapa japonica Flerov (TJF) has been used in traditional oriental medicine to treat diabetes. In ...Obesity is a major human health problem associated with various diseases, including cardiac injury and type 2 diabetes. Trapa japonica Flerov (TJF) has been used in traditional oriental medicine to treat diabetes. In this study, we evaluated the inhibitory effect of and the mechanism underlying the effect of TJF extract on adipogenesis in 3T3-L1 cells. The effects of TJF extract on cell viability were analyzed using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, and the anti-adipogenic effect was measured by oil red O staining. The expression of peroxisomal proliferator activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-α (C/EBP)α, adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), adiponectin, and fatty acid binding protein (FABP)4 involved in adipogenesis was determined by western blot analysis. TJF extract effectively inhibited lipid accumulation and the expression of PPARγ and C/EBPα in 3T3-L1 cells. TJF also increased the phosphorylation of AMPK and ACC, and decreased the expression of adiponectin and FABP4. These results indicate that TJF extract exerts its anti-obesity effect through the downregulation of adipogenic transcription factors and adipogenic marker genes.展开更多
In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and th...In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and their important role in oil accumulation regulation was mainly elucidated. Overexpession of transcription factors as feasible ways of genetic manipulation to increase oJl content in oilseed crops are promising in a long-term perspective.展开更多
AIM: To further analyse cancer involvement of basic transcription factor 3 (BTF3) after detection of its upregulation in gastric tumor samples. METHODS: BTF3 transcription rates in human gastric tumor tissue samples (...AIM: To further analyse cancer involvement of basic transcription factor 3 (BTF3) after detection of its upregulation in gastric tumor samples. METHODS: BTF3 transcription rates in human gastric tumor tissue samples (n = 20) and adjacent normal tissue (n = 18) specimens as well as in the gastric cancer cell lines AGS, SGC-7901, MKN-28, MKN-45 and MGC803 were analyzed via quantitative real-time polymerase chain reaction. The effect of stable BTF3 silencing via infection with a small interfering RNA (siRNA)-BTF3 expressing lentivirus on SGC-7901 cells was measured via Western blotting analysis, proliferation assays, cell cycle and apoptosis profiling by flow cytometry as well as colony forming assays with a Cellomic Assay System. RESULTS: A significant higher expression of BTF3 mRNA was detected in tumors compared to normal gastric tissues (P < 0.01), especially in section tissues from female patients compared to male patients, and all tested gastric cancer cell lines expressed high levels of BTF3. From days 1 to 5, the relative proliferation rates of stable BTF3-siRNA transfected SGC7901 cells were 82%, 70%, 57%, 49% and 44% compared to the control, while the percentage of cells arrested in the G 1 phase was significantly decreased (P = 0.000) and the percentages of cells in the S (P = 0.031) and G 2 /M (P = 0.027) phases were significantly increased. In addition, the colony forming tendency was significantly decreased (P = 0.014) and the apoptosis rate increased from 5.73% to 8.59% (P = 0.014) after BTF3 was silenced in SGC7901 cells. CONCLUSION: BTF3 expression is associated with enhanced cell proliferation, reduced cell cycle regulation and apoptosis and its silencing decreased colony forming and proliferation of gastric cancer cells.展开更多
BRI1-EMS-SUPPRESSOR 1(BES1)transcription factor is closely associated with the brassinosteroid(BR)signaling pathway and plays an important role in plant growth and development.SLB3 is a member of BES1 transcription fa...BRI1-EMS-SUPPRESSOR 1(BES1)transcription factor is closely associated with the brassinosteroid(BR)signaling pathway and plays an important role in plant growth and development.SLB3 is a member of BES1 transcription factor family and its expression was previously shown to increase significantly in tomato seedlings under drought stress.In the present study,we used virus-induced gene silencing(VIGS)technology to downregulate SLB3 expression to reveal the function of the SLB3 gene under drought stress further.The downregulated expression of SLB3 weakened the drought tolerance of the plants appeared earlier wilting and higher accumulation of H2 O2 and O2^–·,decreased superoxide dismutase(SOD)activity,and increased proline(PRO)and malondialdehyde(MDA)contents and peroxidase(POD)activity.Quantitative real-time PCR(qRT-PCR)analysis of BR-related genes revealed that the expression of SlCPD,SlDWARF and BIN2-related genes was significantly upregulated in SLB3-silenced seedlings under drought stress,but that the expression of TCH4-related genes was downregulated.These results showed that silencing the SLB3 gene reduced the drought resistance of tomato plants and had an impact on the BR signaling transduction which may be probably responsible for the variation in drought resistance of the tomato plants.展开更多
FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plan...FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plant life cycle,especially in seed germination,dormancy,embryo formation,seed and fruit development,and maturation.However,there is limited information about its functions in seed and fruit development of grapevine.In this study,we expressed VvFUS3 in tomato for its functional characterization.Overexpression of VvFUS3 in tomato led to a reduction in seed number and seed weight without affecting the fruit size.Histological analysis found that both cell expansion and cell division in transgenic seed and fruit pericarp have been affected.However,there were no obvious differences in pollen size,shape,and viability,suggesting that VvFUS3 affects seed development but not the pollen grains.Moreover,the expression of several genes with presumed roles in seed development and hormone signaling pathways was also influenced by VvFUS3.These results suggest that VvFUS3 is involved in hormonal signaling pathways that regulate seed number and size.In conclusion,our study provides novel preliminary information about the pivotal roles of VvFUS3 in seed and fruit development and these findings can potentially serve as a reference for molecular breeding of seedless grapes.展开更多
Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified ...Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified a gene(named GaPC) controlling petal coloration in Gossypium arboreum and following a heritable recessive epistatic genetic model. Petal coloration is controlled by a single dominant gene,GaPC. A loss-of-function mutation of GaPC leads to a recessive gene Gapc that masks the phenotype of other color genes and shows recessive epistatic interactions. Map-based cloning showed that GaPC encodes an R2R3-MYB transcription factor. A 4814-bp long terminal repeat retrotransposon insertion at the second exon led to GaPC loss of function and disabled petal coloration. GaPC controlled petal coloration by regulating the anthocyanin and flavone biosynthesis pathways. Expression of core genes in the phenylpropanoid and anthocyanin pathways was higher in colored than in white petals. Petal color was conferred by flavonoids and anthocyanins, with red and yellow petals rich in anthocyanin and flavonol glycosides, respectively. This study provides new insight on molecular mechanism of recessive epistasis,also has potential breeding value by engineering GaPC to develop colored petals or fibers for multifunctional utilization of cotton.展开更多
Rosa sterilis S.D.Shi is an important economic tree in China that produces fruits with high nutritional and medicinal value.Many of R.sterills’organs are covered with different types of trichomes or prickles that dir...Rosa sterilis S.D.Shi is an important economic tree in China that produces fruits with high nutritional and medicinal value.Many of R.sterills’organs are covered with different types of trichomes or prickles that directly affect fruit appearance and plant management.This study used RNA sequencing technology to analyze the transcriptomes of two parts of the inflorescence branch,namely inflorescence stems with flagellated trichomes and pedicels with both flagellated and glandular trichomes.Comparative transcriptomic analysis showed that many transcription factors(TFs)are potentially involved in the formation and development of trichomes.The accumulation of RsETC1,a TF of the R3-MYB family,was significantly higher in inflorescence stems than in pedicels;quantitative reverse transcription PCR(qRTPCR)verified that its expression was significantly higher in inflorescence stems than in pedicels during the first three development stages,indicating its inhibitory action on the initiation of glandular trichomes in R.sterilis.The mRNA level of RsETC1 accumulated to significantly higher levels in trichomeless tissues than in tissues with trichromes,suggesting that this gene may inhibit the formation of trichomes in R.sterilis.Over-expression of RsETC1 in Arabidopsis resulted in glabrous phenotypes,and the expression of trichome-related endogenous genes,except for TTG1,was markedly reduced.In addition,the contents of the phytohormones jasmonic acid(JA),gibberellin A3(GA_(3)),and cytokinins(CKs)in pedicels were significantly higher than those in inflorescence stems,and the expression patterns of the genes related to hormone biosynthesis and signal transduction presented consistent responses,suggesting that the transduction of these hormones might be crucial for trichome initiation and development.These data provide a new perspective for revealing the molecular mechanism of trichome formation in R.sterilis.展开更多
Objective:To study the correlation of Runt-related transcription factor gene 3 (RUNX3) expression in osteosarcoma tissue with cell proliferation and angiogenesis.Methods: A total of 80 patients with osteosarcoma who w...Objective:To study the correlation of Runt-related transcription factor gene 3 (RUNX3) expression in osteosarcoma tissue with cell proliferation and angiogenesis.Methods: A total of 80 patients with osteosarcoma who were treated in our hospital between February 2014 and February 2017 were collected, and the RUNX3 expression in osteosarcoma tissue and adjacent tissue were detected. According to the RUNX3 expression in tumor tissue, the patients were further divided into high RUNX3 expression group and low RUNX3 expression group, and the proliferation gene and angiogenesis gene expression were compared.Results:RUNX3, KISS-1 and RanBP9 mRNA expression in osteosarcoma tissue were significantly lower than those in adjacent tissue while VCP, Six1, S100A6, IF-1α, MMP-14, bFGF and Ang-2 mRNA expression were significantly higher than those in adjacent tissue;KISS-1 and RanBP9 mRNA expression in osteosarcoma tissue of high RUNX3 expression group were significantly higher than those of low RUNX3 expression group while VCP, Six1, S100A6, IF-1 , MMP-14, bFGF and Ang-2 mRNA expression were significantly lower than those of low RUNX3 expression group.Conclusions:The desease of RUNX3 expression in osteosarcoma tissue is one of the direct causes of increased tumor proliferation activity and strong angiogenesis.展开更多
Naive CD4 T cells can differentiate into at least two different types ofT helpers, Thl and Th2 cells. Th2 cells, capable of producing IL-4, IL-5 and IL-13, are involved in humoral immunity against extracellular pathog...Naive CD4 T cells can differentiate into at least two different types ofT helpers, Thl and Th2 cells. Th2 cells, capable of producing IL-4, IL-5 and IL-13, are involved in humoral immunity against extracellular pathogens and in the induction of asthma and other allergic diseases. In this review, we summarize recent reports regarding the transcription factors involved in Th2 differentiation and cell expansion, including StatS, Gfi- 1 and GATA-3. Stats activation is necessary and sufficient for IL-2-mediated function in Th2 differentiation. Enhanced Stats signaling induces Th2 differentiation independent of IL-4 signaling; although it does not up-regulate GATA-3 expression, it does require the presence of GATA-3 for its action. Gfi-1, induced by IL-4, promotes the expansion of GATA-3-expressing cells. Analysis of conditional Gata3 knockout mice confirmed the critical role of GATA-3 in Th2 cell differentiation (both IL-4 dependent and IL-4 independent) and in Th2 cell proliferation and also showed the importance of basal GATA-3 expression in inhibiting Thl differentiation.展开更多
AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude...AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude mice in vivo.METHODS: To construct the recombinant plasmid of pSilencer 3.0-H1-STAT3-siRNA-GFP (pSHI-siRNA- STAT3) and establish the tumor-bearing nude mouse model of the HCC cell line SMMC7721, we used intratumoral injection together with electroblotting to transfect the recombinant plasmid pSHI-siRNA- STAT3 into the transplanted tumor. The weight of the nude mice and tumor volumes were recorded. STAT3 gene transcription was detected by semi-quantitative reverse transcription polymerase chain reaction (RT- PCR). Level of protein expression and location of STAT3 were determined by Western blotting and immunohistochemical staining. STAT3-related genes such as survivin, c-myc, VEGF, p53 and caspase3 mRNA and protein expression were detected in tumor tissues at the same time. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis of tumor cells.RESULTS: The weight of the treated nude mice increased, and the tumor volume decreased markedly compared with those of the mock-treated and negative control groups (P 〈 0.01). The results of RT-PCR and Western blotting showed that mRNA and protein levels of STAT3 declined markedly in the treated group. The change in STAT3-related gene expression in tumor tissues at the mRNA and protein level also varied, the expression of survivin, VEGF and c-myc were obviously reduced, and expression of p53 and caspase3 increased (P 〈 0.01). Most of the tumor tissue ceils in the treated group developed apoptosis that was detected by TUNEL assay.CONCLUSION: Silencing of STAT3 expression by RNAi significantly inhibits expression of STAT3 mRNA and protein, and suppresses growth of human HCC in tumor-bearing nude mice. The mechanism may be related to down-regulation of survivin, VEGF and c-myc and up-regulation of p53 and caspase3 expression. Accordingly, the STAT3 gene may act as an important and effective target in gene therapy of HCC.展开更多
Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metaboli...Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metabolism is largely unknown in tea leaves. Here, we characterized a chlorophyllase1 gene CsCLH1 from young tea leaves and showed it is essential for chlorophyll metabolism, using transient overexpression and silencing in tea leaves and ectopic overexpression in Arabidopsis. CsCLH1 was significantly induced by high light. The DOF protein CsDOF3, an upstream direct regulator of CsCLH1, was also identified. Acting as a nuclear-localized transcriptional factor, CsDOF3 responded for light and repressed CsCLH1 transcription and increased chlorophyll content by directly binding to the AAAG cis-element in the CsCLH1 promoter. CsDOF3was able to physically interact with the R2R3-MYB transcription factor CsMYB308 and interfere with transcriptional activity of CsCLH1. In addition, CsMYB308 binds to the CsCLH1 promoter to enhance CsCLH1 expression and decrease chlorophyll content. CsMYB308 and CsDOF3 act as an antagonistic complex to regulate CsCLH1 transcription and chlorophyll in young leaves. Collectively, the study adds to the understanding of the transcriptional regulation of chlorophyll in tea leaves in response to light and provides a basis for improving the appearance of tea.展开更多
We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as t...We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as the wild type under normal germination conditions.The expression of OsbZIP09 was induced by abscisic acid(ABA)and declined as the germination process.As a nucleus-localized transcription factor,the conserved binding motif of OsbZIP09 was identified via DNA affinity purification sequencing technique.Further evidences indicated that OsbZIP09 directly enhanced the expression of ABA catabolism gene ABA8ox1,thus reducing ABA accumulation.In addition,OsbZIP09 also directly bound to the promoter of LEA3 gene to inhibit its expression,thus further alleviating the suppressive effect of ABA on seed germination.These results demonstrated that OsbZIP09 likely functions as a brake of the ABA pathway to attenuate the inhibitory effect of ABA on rice seed germination via dual strategies.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
Objective:The aim of this study was to investigate the correlation of STAT3 activation of tumor-associated macrophages(TAMs) and local cytokines(IL-1β,TNF-α,TGF-β and IL-12) and prognostic factors in breast cancer....Objective:The aim of this study was to investigate the correlation of STAT3 activation of tumor-associated macrophages(TAMs) and local cytokines(IL-1β,TNF-α,TGF-β and IL-12) and prognostic factors in breast cancer.Methods:TAMs in 50 primary breast cancers and macrophages in 15 normal breasts were examined by immunohistochemistry.And STAT3 DNA-binding activity of TAMs in 33/50 primary breast cancers was measured by transcription factor DNA-binding ELISA.In addition,the concentrations of IL-1β,TNF-α,TGF-β and IL-12 were measured in the 33 primary breast cancers extracts by ELISA.The correlation between STAT3 activity of TAMs and concentrations of IL-1β,TNF-α,TGF-β and IL-12 were analyzed.The correlation between STAT3 activity of TAMs and conventional clinicopathologic parameters were also evaluated.Results:The macrophages density showed a significant increase in primary breast cancers compared to normal breasts.STAT3 DNA-binding activity of TAMs in breast cancer was significantly higher than that of monocytes/macrophages from peripheral blood of the patients.Furthermore,STAT3 activity of TAMs was correlated significantly with the levels of IL-1β,TNF-α and TGF-β in breast cancer tissues.But an inverse association was observed between STAT3 activity of TAMs and IL-12.In addition,STAT3 activity of TAMs was higher in high histological type than in low histological type,and STAT3 activity of TAMs was higher in CerBb-2 positive than CerBb-2 negative.Conclusion:STAT3 activation of TAMs may be associate with increasing of IL-1β,TNF-α and TGF-β and decreasing of IL-12 in breast cancer.STAT3 activation of TAMs may also be correlated with histological grade and CerBb-2 status of breast cancer.展开更多
Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds.Thus far,the transcriptional regulatory mechanisms that govern seed oil accumulation remain la...Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds.Thus far,the transcriptional regulatory mechanisms that govern seed oil accumulation remain largely unknown.Here,we identified the transcriptional regulatory network composed of MADS-box transcription factors SEEDSTICK(STK)and SEPALLATA3(SEP3),which bridges several key genes to regulate oil accumulation in seeds.We found that STK,highly expressed in the developing embryo,positively regulates seed oil accumulation in Arabidopsis(Arabidopsis thaliana).Furthermore,we discovered that SEP3 physically interacts with STK in vivo and in vitro.Seed oil content is increased by the SEP3 mutation,while it is decreased by SEP3 overexpression.The chromatin immunoprecipitation,electrophoretic mobility shift assay,and transient dual-luciferase reporter assays showed that STK positively regulates seed oil accumulation by directly repressing the expression of MYB5,SEP3,and SEED FATTY ACID REDUCER 4(SFAR4).Moreover,genetic and molecular analyses demonstrated that STK and SEP3 antagonistically regulate seed oil production and that SEP3 weakens the binding ability of STK to MYB5,SEP3,and SFAR4.Additionally,we demonstrated that TRANSPARENT TESTA 8(TT8)and ACYL-ACYL CARRIER PROTEIN DESATURASE 3(AAD3)are direct targets of MYB5 during seed oil accumulation in Arabidopsis.Together,our findings provide the transcriptional regulatory network antagonistically orchestrated by STK and SEP3,which fine tunes oil accumulation in seeds.展开更多
基金National Natural Science Foundation of China(31661143002,81760507,31571709,31771839,31701123 and 31501034)Yunnan Applied Basic Research Projects(2016FA011,2016FB060 and 2016FB040)+1 种基金the National R&D Infrastructure and Facility development Program of China"Fundamental Science Data Sharing Platform(DKA 201712-02-16)the 13th Five-year informatization Plan of Chinese Academy of Sciences(No.XXH13506)。
文摘The B3 transcription factors(TFs)in plants play vital roles in numerous biological processes.Although B3 genes have been broadly identified in many plants,little is known about their potential functions in mediating seed development and material accumulation.Castor bean(Ricinus communis)is a non-edible oilseed crop considered an ideal model system for seed biology research.Here,we identified a total of 61 B3 genes in the castor bean genome,which can be classified into five subfamilies,including ABI3/VP1,HSI,ARF,RAV and REM.The expression profiles revealed that RcABI3/VP1 subfamily genes are significantly up-regulated in the middle and later stages of seed development,indicating that these genes may be associated with the accumulation of storage oils.Furthermore,through yeast one-hybrid and tobacco transient expression assays,we detected that ABI3/VP1 subfamily member RcLEC2 directly regulates the transcription of RcOleosin2,which encodes an oil-body structural protein.This finding suggests that RcLEC2,as a seed-specific TF,may be involved in the regulation of storage materials accumulation.This study provides novel insights into the potential roles and molecular basis of B3 family proteins in seed development and material accumulation.
文摘Obesity is a major human health problem associated with various diseases, including cardiac injury and type 2 diabetes. Trapa japonica Flerov (TJF) has been used in traditional oriental medicine to treat diabetes. In this study, we evaluated the inhibitory effect of and the mechanism underlying the effect of TJF extract on adipogenesis in 3T3-L1 cells. The effects of TJF extract on cell viability were analyzed using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, and the anti-adipogenic effect was measured by oil red O staining. The expression of peroxisomal proliferator activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-α (C/EBP)α, adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), adiponectin, and fatty acid binding protein (FABP)4 involved in adipogenesis was determined by western blot analysis. TJF extract effectively inhibited lipid accumulation and the expression of PPARγ and C/EBPα in 3T3-L1 cells. TJF also increased the phosphorylation of AMPK and ACC, and decreased the expression of adiponectin and FABP4. These results indicate that TJF extract exerts its anti-obesity effect through the downregulation of adipogenic transcription factors and adipogenic marker genes.
基金Supported by Science and Technology Foundation of Guizhou Province [(2011)2089]Engineering Technology Research Center Building Fund of Guizhou Province ([2012]4006)Excellent Scientific and Educational Governor Fund of Guizhou Province ([2009]06)~~
文摘In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and their important role in oil accumulation regulation was mainly elucidated. Overexpession of transcription factors as feasible ways of genetic manipulation to increase oJl content in oilseed crops are promising in a long-term perspective.
基金Supported by Science and Technology Project of Hunan Province, China, No. 2013FJ3151
文摘AIM: To further analyse cancer involvement of basic transcription factor 3 (BTF3) after detection of its upregulation in gastric tumor samples. METHODS: BTF3 transcription rates in human gastric tumor tissue samples (n = 20) and adjacent normal tissue (n = 18) specimens as well as in the gastric cancer cell lines AGS, SGC-7901, MKN-28, MKN-45 and MGC803 were analyzed via quantitative real-time polymerase chain reaction. The effect of stable BTF3 silencing via infection with a small interfering RNA (siRNA)-BTF3 expressing lentivirus on SGC-7901 cells was measured via Western blotting analysis, proliferation assays, cell cycle and apoptosis profiling by flow cytometry as well as colony forming assays with a Cellomic Assay System. RESULTS: A significant higher expression of BTF3 mRNA was detected in tumors compared to normal gastric tissues (P < 0.01), especially in section tissues from female patients compared to male patients, and all tested gastric cancer cell lines expressed high levels of BTF3. From days 1 to 5, the relative proliferation rates of stable BTF3-siRNA transfected SGC7901 cells were 82%, 70%, 57%, 49% and 44% compared to the control, while the percentage of cells arrested in the G 1 phase was significantly decreased (P = 0.000) and the percentages of cells in the S (P = 0.031) and G 2 /M (P = 0.027) phases were significantly increased. In addition, the colony forming tendency was significantly decreased (P = 0.014) and the apoptosis rate increased from 5.73% to 8.59% (P = 0.014) after BTF3 was silenced in SGC7901 cells. CONCLUSION: BTF3 expression is associated with enhanced cell proliferation, reduced cell cycle regulation and apoptosis and its silencing decreased colony forming and proliferation of gastric cancer cells.
基金This research was supported by the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province,China(UNPYSCT-2018169)the China Postdoctoral Science Foundation Grant(2018 M630333)+1 种基金the National Key R&D Program of China(2017YFD0101900)the earmarked fund for China Agriculture Research System(CARS-23-A-16).
文摘BRI1-EMS-SUPPRESSOR 1(BES1)transcription factor is closely associated with the brassinosteroid(BR)signaling pathway and plays an important role in plant growth and development.SLB3 is a member of BES1 transcription factor family and its expression was previously shown to increase significantly in tomato seedlings under drought stress.In the present study,we used virus-induced gene silencing(VIGS)technology to downregulate SLB3 expression to reveal the function of the SLB3 gene under drought stress further.The downregulated expression of SLB3 weakened the drought tolerance of the plants appeared earlier wilting and higher accumulation of H2 O2 and O2^–·,decreased superoxide dismutase(SOD)activity,and increased proline(PRO)and malondialdehyde(MDA)contents and peroxidase(POD)activity.Quantitative real-time PCR(qRT-PCR)analysis of BR-related genes revealed that the expression of SlCPD,SlDWARF and BIN2-related genes was significantly upregulated in SLB3-silenced seedlings under drought stress,but that the expression of TCH4-related genes was downregulated.These results showed that silencing the SLB3 gene reduced the drought resistance of tomato plants and had an impact on the BR signaling transduction which may be probably responsible for the variation in drought resistance of the tomato plants.
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1603234)the Program for Innovative Research Team of Grape Germplasm Resources and Breeding(Grant No.2013KCT-25).
文摘FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plant life cycle,especially in seed germination,dormancy,embryo formation,seed and fruit development,and maturation.However,there is limited information about its functions in seed and fruit development of grapevine.In this study,we expressed VvFUS3 in tomato for its functional characterization.Overexpression of VvFUS3 in tomato led to a reduction in seed number and seed weight without affecting the fruit size.Histological analysis found that both cell expansion and cell division in transgenic seed and fruit pericarp have been affected.However,there were no obvious differences in pollen size,shape,and viability,suggesting that VvFUS3 affects seed development but not the pollen grains.Moreover,the expression of several genes with presumed roles in seed development and hormone signaling pathways was also influenced by VvFUS3.These results suggest that VvFUS3 is involved in hormonal signaling pathways that regulate seed number and size.In conclusion,our study provides novel preliminary information about the pivotal roles of VvFUS3 in seed and fruit development and these findings can potentially serve as a reference for molecular breeding of seedless grapes.
基金supported by the Fundamental Research Funds for the Central Universities(KYZZ2022003)Jiangsu Collaborative Innovation Center for Modern Crop Production project (No.10)。
文摘Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified a gene(named GaPC) controlling petal coloration in Gossypium arboreum and following a heritable recessive epistatic genetic model. Petal coloration is controlled by a single dominant gene,GaPC. A loss-of-function mutation of GaPC leads to a recessive gene Gapc that masks the phenotype of other color genes and shows recessive epistatic interactions. Map-based cloning showed that GaPC encodes an R2R3-MYB transcription factor. A 4814-bp long terminal repeat retrotransposon insertion at the second exon led to GaPC loss of function and disabled petal coloration. GaPC controlled petal coloration by regulating the anthocyanin and flavone biosynthesis pathways. Expression of core genes in the phenylpropanoid and anthocyanin pathways was higher in colored than in white petals. Petal color was conferred by flavonoids and anthocyanins, with red and yellow petals rich in anthocyanin and flavonol glycosides, respectively. This study provides new insight on molecular mechanism of recessive epistasis,also has potential breeding value by engineering GaPC to develop colored petals or fibers for multifunctional utilization of cotton.
基金supported by grants from the Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province,China(U1812401)the Talent Project of Guizhou Province,China(20164016)。
文摘Rosa sterilis S.D.Shi is an important economic tree in China that produces fruits with high nutritional and medicinal value.Many of R.sterills’organs are covered with different types of trichomes or prickles that directly affect fruit appearance and plant management.This study used RNA sequencing technology to analyze the transcriptomes of two parts of the inflorescence branch,namely inflorescence stems with flagellated trichomes and pedicels with both flagellated and glandular trichomes.Comparative transcriptomic analysis showed that many transcription factors(TFs)are potentially involved in the formation and development of trichomes.The accumulation of RsETC1,a TF of the R3-MYB family,was significantly higher in inflorescence stems than in pedicels;quantitative reverse transcription PCR(qRTPCR)verified that its expression was significantly higher in inflorescence stems than in pedicels during the first three development stages,indicating its inhibitory action on the initiation of glandular trichomes in R.sterilis.The mRNA level of RsETC1 accumulated to significantly higher levels in trichomeless tissues than in tissues with trichromes,suggesting that this gene may inhibit the formation of trichomes in R.sterilis.Over-expression of RsETC1 in Arabidopsis resulted in glabrous phenotypes,and the expression of trichome-related endogenous genes,except for TTG1,was markedly reduced.In addition,the contents of the phytohormones jasmonic acid(JA),gibberellin A3(GA_(3)),and cytokinins(CKs)in pedicels were significantly higher than those in inflorescence stems,and the expression patterns of the genes related to hormone biosynthesis and signal transduction presented consistent responses,suggesting that the transduction of these hormones might be crucial for trichome initiation and development.These data provide a new perspective for revealing the molecular mechanism of trichome formation in R.sterilis.
文摘Objective:To study the correlation of Runt-related transcription factor gene 3 (RUNX3) expression in osteosarcoma tissue with cell proliferation and angiogenesis.Methods: A total of 80 patients with osteosarcoma who were treated in our hospital between February 2014 and February 2017 were collected, and the RUNX3 expression in osteosarcoma tissue and adjacent tissue were detected. According to the RUNX3 expression in tumor tissue, the patients were further divided into high RUNX3 expression group and low RUNX3 expression group, and the proliferation gene and angiogenesis gene expression were compared.Results:RUNX3, KISS-1 and RanBP9 mRNA expression in osteosarcoma tissue were significantly lower than those in adjacent tissue while VCP, Six1, S100A6, IF-1α, MMP-14, bFGF and Ang-2 mRNA expression were significantly higher than those in adjacent tissue;KISS-1 and RanBP9 mRNA expression in osteosarcoma tissue of high RUNX3 expression group were significantly higher than those of low RUNX3 expression group while VCP, Six1, S100A6, IF-1 , MMP-14, bFGF and Ang-2 mRNA expression were significantly lower than those of low RUNX3 expression group.Conclusions:The desease of RUNX3 expression in osteosarcoma tissue is one of the direct causes of increased tumor proliferation activity and strong angiogenesis.
文摘Naive CD4 T cells can differentiate into at least two different types ofT helpers, Thl and Th2 cells. Th2 cells, capable of producing IL-4, IL-5 and IL-13, are involved in humoral immunity against extracellular pathogens and in the induction of asthma and other allergic diseases. In this review, we summarize recent reports regarding the transcription factors involved in Th2 differentiation and cell expansion, including StatS, Gfi- 1 and GATA-3. Stats activation is necessary and sufficient for IL-2-mediated function in Th2 differentiation. Enhanced Stats signaling induces Th2 differentiation independent of IL-4 signaling; although it does not up-regulate GATA-3 expression, it does require the presence of GATA-3 for its action. Gfi-1, induced by IL-4, promotes the expansion of GATA-3-expressing cells. Analysis of conditional Gata3 knockout mice confirmed the critical role of GATA-3 in Th2 cell differentiation (both IL-4 dependent and IL-4 independent) and in Th2 cell proliferation and also showed the importance of basal GATA-3 expression in inhibiting Thl differentiation.
基金Supported by The Science and Technology Fund of Jilin Province,No. 200505219
文摘AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude mice in vivo.METHODS: To construct the recombinant plasmid of pSilencer 3.0-H1-STAT3-siRNA-GFP (pSHI-siRNA- STAT3) and establish the tumor-bearing nude mouse model of the HCC cell line SMMC7721, we used intratumoral injection together with electroblotting to transfect the recombinant plasmid pSHI-siRNA- STAT3 into the transplanted tumor. The weight of the nude mice and tumor volumes were recorded. STAT3 gene transcription was detected by semi-quantitative reverse transcription polymerase chain reaction (RT- PCR). Level of protein expression and location of STAT3 were determined by Western blotting and immunohistochemical staining. STAT3-related genes such as survivin, c-myc, VEGF, p53 and caspase3 mRNA and protein expression were detected in tumor tissues at the same time. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis of tumor cells.RESULTS: The weight of the treated nude mice increased, and the tumor volume decreased markedly compared with those of the mock-treated and negative control groups (P 〈 0.01). The results of RT-PCR and Western blotting showed that mRNA and protein levels of STAT3 declined markedly in the treated group. The change in STAT3-related gene expression in tumor tissues at the mRNA and protein level also varied, the expression of survivin, VEGF and c-myc were obviously reduced, and expression of p53 and caspase3 increased (P 〈 0.01). Most of the tumor tissue ceils in the treated group developed apoptosis that was detected by TUNEL assay.CONCLUSION: Silencing of STAT3 expression by RNAi significantly inhibits expression of STAT3 mRNA and protein, and suppresses growth of human HCC in tumor-bearing nude mice. The mechanism may be related to down-regulation of survivin, VEGF and c-myc and up-regulation of p53 and caspase3 expression. Accordingly, the STAT3 gene may act as an important and effective target in gene therapy of HCC.
基金supported by National Natural Science Foundation of China (Grant No.31700609)Natural Science Foundation of Shandong Province (Grant No.ZR2017BC086)State Key Laboratory of Tea Plant Biology and Utilization Open Foundation(Grant No.SKLTOF20180104)。
文摘Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metabolism is largely unknown in tea leaves. Here, we characterized a chlorophyllase1 gene CsCLH1 from young tea leaves and showed it is essential for chlorophyll metabolism, using transient overexpression and silencing in tea leaves and ectopic overexpression in Arabidopsis. CsCLH1 was significantly induced by high light. The DOF protein CsDOF3, an upstream direct regulator of CsCLH1, was also identified. Acting as a nuclear-localized transcriptional factor, CsDOF3 responded for light and repressed CsCLH1 transcription and increased chlorophyll content by directly binding to the AAAG cis-element in the CsCLH1 promoter. CsDOF3was able to physically interact with the R2R3-MYB transcription factor CsMYB308 and interfere with transcriptional activity of CsCLH1. In addition, CsMYB308 binds to the CsCLH1 promoter to enhance CsCLH1 expression and decrease chlorophyll content. CsMYB308 and CsDOF3 act as an antagonistic complex to regulate CsCLH1 transcription and chlorophyll in young leaves. Collectively, the study adds to the understanding of the transcriptional regulation of chlorophyll in tea leaves in response to light and provides a basis for improving the appearance of tea.
基金supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates,Science Fund for Distinguished Young Scholars of Jiangsu Province,China(Grant No.BK20200045)the Priority Academic Program Development of Jiangsu Higher Education Institutions Program,China.
文摘We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as the wild type under normal germination conditions.The expression of OsbZIP09 was induced by abscisic acid(ABA)and declined as the germination process.As a nucleus-localized transcription factor,the conserved binding motif of OsbZIP09 was identified via DNA affinity purification sequencing technique.Further evidences indicated that OsbZIP09 directly enhanced the expression of ABA catabolism gene ABA8ox1,thus reducing ABA accumulation.In addition,OsbZIP09 also directly bound to the promoter of LEA3 gene to inhibit its expression,thus further alleviating the suppressive effect of ABA on seed germination.These results demonstrated that OsbZIP09 likely functions as a brake of the ABA pathway to attenuate the inhibitory effect of ABA on rice seed germination via dual strategies.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
基金Supported by a grant from the Natural Sciences Foundation of Chongqing City (No.CSTC2007BB5261)
文摘Objective:The aim of this study was to investigate the correlation of STAT3 activation of tumor-associated macrophages(TAMs) and local cytokines(IL-1β,TNF-α,TGF-β and IL-12) and prognostic factors in breast cancer.Methods:TAMs in 50 primary breast cancers and macrophages in 15 normal breasts were examined by immunohistochemistry.And STAT3 DNA-binding activity of TAMs in 33/50 primary breast cancers was measured by transcription factor DNA-binding ELISA.In addition,the concentrations of IL-1β,TNF-α,TGF-β and IL-12 were measured in the 33 primary breast cancers extracts by ELISA.The correlation between STAT3 activity of TAMs and concentrations of IL-1β,TNF-α,TGF-β and IL-12 were analyzed.The correlation between STAT3 activity of TAMs and conventional clinicopathologic parameters were also evaluated.Results:The macrophages density showed a significant increase in primary breast cancers compared to normal breasts.STAT3 DNA-binding activity of TAMs in breast cancer was significantly higher than that of monocytes/macrophages from peripheral blood of the patients.Furthermore,STAT3 activity of TAMs was correlated significantly with the levels of IL-1β,TNF-α and TGF-β in breast cancer tissues.But an inverse association was observed between STAT3 activity of TAMs and IL-12.In addition,STAT3 activity of TAMs was higher in high histological type than in low histological type,and STAT3 activity of TAMs was higher in CerBb-2 positive than CerBb-2 negative.Conclusion:STAT3 activation of TAMs may be associate with increasing of IL-1β,TNF-α and TGF-β and decreasing of IL-12 in breast cancer.STAT3 activation of TAMs may also be correlated with histological grade and CerBb-2 status of breast cancer.
基金supported by the National Key Research and Development Program of China(grant no.2022YFD1200400)the National Natural Science Foundation of China(grant no.31971974),the Key Research and Development Program of Shaanxi Province(grant nos.2021LLRH-07 and 2022NY-158)+1 种基金the PhD Start-up Fund of Northwest A&F University(grant no.Z1090121052)a grant from the Yang Ling Seed Industry Innovation Center(grant no.K3031122024).
文摘Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds.Thus far,the transcriptional regulatory mechanisms that govern seed oil accumulation remain largely unknown.Here,we identified the transcriptional regulatory network composed of MADS-box transcription factors SEEDSTICK(STK)and SEPALLATA3(SEP3),which bridges several key genes to regulate oil accumulation in seeds.We found that STK,highly expressed in the developing embryo,positively regulates seed oil accumulation in Arabidopsis(Arabidopsis thaliana).Furthermore,we discovered that SEP3 physically interacts with STK in vivo and in vitro.Seed oil content is increased by the SEP3 mutation,while it is decreased by SEP3 overexpression.The chromatin immunoprecipitation,electrophoretic mobility shift assay,and transient dual-luciferase reporter assays showed that STK positively regulates seed oil accumulation by directly repressing the expression of MYB5,SEP3,and SEED FATTY ACID REDUCER 4(SFAR4).Moreover,genetic and molecular analyses demonstrated that STK and SEP3 antagonistically regulate seed oil production and that SEP3 weakens the binding ability of STK to MYB5,SEP3,and SFAR4.Additionally,we demonstrated that TRANSPARENT TESTA 8(TT8)and ACYL-ACYL CARRIER PROTEIN DESATURASE 3(AAD3)are direct targets of MYB5 during seed oil accumulation in Arabidopsis.Together,our findings provide the transcriptional regulatory network antagonistically orchestrated by STK and SEP3,which fine tunes oil accumulation in seeds.