Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure tre...Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.展开更多
Background:Glioblastoma,a notably malignant tumor within the central nervous system,is distinguished by its aggressive behavior.Silvestrol,a robust inhibitor of the RNA helicase eukaryotic initiation factor 4A(eIF4A),...Background:Glioblastoma,a notably malignant tumor within the central nervous system,is distinguished by its aggressive behavior.Silvestrol,a robust inhibitor of the RNA helicase eukaryotic initiation factor 4A(eIF4A),has shown significant potential as an anticancer compound.Yet,the impact of silvestrol on glioblastoma,especially its molecular mechanisms,has not been fully elucidated.Methods:This investigation employed a variety of in vitro assays,such as cell counting kit-8(CCK-8),clonogenic,5-ethynyl-2′-deoxyuridine(EDU),wound healing,and flow cytometry,to evaluate cell cycle progression,apoptosis,cell viability,and migration.Western blot analysis was also performed to study the apoptosis and extracellular regulated kinase(ERK)pathways.After the ERK pathway was inhibited,differentially expressed genes(DEGs)in U87 cells were identified,followed by an analysis of target genes using the gene expression profiling interactive analysis(GEPIA)database.Results:Silvestrol significantly suppressed the proliferation,migration,and colony formation of glioma cells.It caused cell cycle arrest and enhanced apoptosis in these cells.Additionally,silvestrol stimulated the ERK pathway,with these effects being reversible by an ERK phosphorylation inhibitor.Transcriptome combined with GEPIA,GSCA,UALCAN,TIMER database screened 4 potential drug targets of silvestrol:chromosome 1 open reading frame 226(C1ORF226),mannosidase beta A(MANBA),IQ motif and Sec7 domain 2(IQSEC2),neuregulin 1(NRG-1).Among them,C1ORF226 was lower risk gene while MANBA,IQSEC2,and NRG-1 were high-risk genes.Furthermore,silvestrol notably reduced MANBA mRNA levels,which could be reversed by inhibiting ERK phosphorylation.Furthermore,silvestrol markedly decreased NRG-1 protein levels,with an additional reduction observed when the ERK pathway was blocked.Conclusion:Silvestrol’s anti-glioma effects are primarily due to the suppression of MANBA expression via the ERK pathway and possibly by hindering the translation of NRG-1 protein,thus reducing its expression.The downregulation of MANBA and NRG-1 proteins may be crucial in hindering glioma development and progression.These results highlight the intricate relationship between the ERK pathway and gene expression regulation in silvestrol’s therapeutic effectiveness against glioma.展开更多
Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy pre...Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.展开更多
Objective:To investigate the expression of miR-195 in intrauterine adhesion(IUA)and its relationship with TGF-β1/Smads and FGF2/FGFR1/ERK pathways.Methods:118 cases of IUA patients who underwent hysteroscopic treatme...Objective:To investigate the expression of miR-195 in intrauterine adhesion(IUA)and its relationship with TGF-β1/Smads and FGF2/FGFR1/ERK pathways.Methods:118 cases of IUA patients who underwent hysteroscopic treatment in our hospital between September 2017 and February 2019 were regarded as IUA group,80 cases of dysfunctional uterine bleeding patients who underwent hysteroscopic curettage in our hospital during the same period were regarded as control group.Differences in the expression levels of miR-195 as well as TGF-β1/Smads and FGF2/FGFR1/ERK signaling pathway-related molecules in the focal tissues obtained by hysteroscopy were compared between the two groups.Pearson test was used to evaluate the correlation of miR-195 expression in the intrauterine adhesion tissues with TGF-β1/Smads and FGF2/FGFR1/ERK pathways in IUA patients.Results:miR-195 expression in intrauterine adhesion tissues of IUA group was higher than that in endometrial tissues of control group(P<0.05).TGF-β1,Smad2 and Smad3 mRNA expression in intrauterine adhesion tissues of IUA group were higher than those in endometrial tissues of control group;FGF2,FGFR1 and ERK mRNA expression in intrauterine adhesion tissues were higher than those in endometrial tissues of control group(P<0.05).Pearson test showed that the miR-195 expression in intrauterine adhesion tissues of IUA group was positively correlated with the TGF-β1/Smads pathway-related molecules TGF-β1,Smad2 and Smad3 mRNA expression,and positively correlated with the FGF2/FGFR1/ERK pathway-related molecules FGF2,FGFR1 and ERK mRNA expression(P<0.05).Conclusion:miR-195 is highly expressed in IUA lesion tissues and may promote disease progression by activating TGF-β1/Smads and FGF2/FGFR1/ERK signaling pathways.展开更多
目的研究ERK1/2信号通路在左归丸含药血清调控MC3T3-E1细胞基因表达中的作用。方法以倍美力为阳性对照药,对SD♀大鼠灌服高、中、低剂量的左归丸混悬液,d7腹主动脉取血分离含药血清。采用MTT法检测左归丸含药血清和PD98059对MC3T3-E1细...目的研究ERK1/2信号通路在左归丸含药血清调控MC3T3-E1细胞基因表达中的作用。方法以倍美力为阳性对照药,对SD♀大鼠灌服高、中、低剂量的左归丸混悬液,d7腹主动脉取血分离含药血清。采用MTT法检测左归丸含药血清和PD98059对MC3T3-E1细胞增殖作用的影响,采用Western blot法检测ERK1/2蛋白的磷酸化水平及TGF-β1、Smad4蛋白表达,采用Real Time RT-PCR法检测Cbfα1、COLⅠmRNA表达。结果左归丸含药血清和倍美力能促进MC3T3-E1细胞增殖,诱导ERK1/2蛋白的磷酸化,促进TGF-β1、Smad4蛋白分泌,上调其Cbfα1、COLⅠmRNA表达;加入PD98059后MC3T3-E1细胞增殖下降、ERK1/2蛋白的磷酸化水平降低、TGF-β1蛋白表达进一步升高、Smad4蛋白表达降低、Cbfα1、COLⅠmRNA表达下调。结论左归丸能有效促进成骨细胞增殖和分化;左归丸可能是通过发挥雌激素样作用调控了ERK/Smads信号通路,从而达到防治骨质疏松的目的。展开更多
BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy optio...BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis.展开更多
BACKGROUND Insomnia is a disease where individuals cannot maintain a steady and stable sleep state or fail to fall asleep.Western medicine mainly uses sedatives and hypnotic drugs to treat insomnia,and long-term use i...BACKGROUND Insomnia is a disease where individuals cannot maintain a steady and stable sleep state or fail to fall asleep.Western medicine mainly uses sedatives and hypnotic drugs to treat insomnia,and long-term use is prone to drug resistance and other adverse reactions.Acupuncture has a good curative effect and unique advantages in the treatment of insomnia.AIM To explore the molecular mechanism of acupuncture at Back-Shu point for the treatment of insomnia.METHODS We first prepared a rat model of insomnia,and then carried out acupuncture for 7 consecutive days.After treatment,the sleep time and general behavior of the rats were determined.The Morris water maze test was used to assess the learning ability and spatial memory ability of the rats.The expression levels of inflammatory cytokines in serum and the hippocampus were detected by ELISA.qRTPCR was used to detect the mRNA expression changes in the ERK/NF-κB signaling pathway.Western blot and immunohistochemistry were carried out to evaluate the protein expression levels of RAF-1,MEK-2,ERK1/2 and NF-κB.RESULTS Acupuncture can prolong sleep duration,and improve mental state,activity,diet volume,learning ability and spatial memory.In addition,acupuncture increased the release of 1L-1β,1L-6 and TNF-αin serum and the hippocampus and inhibited the mRNA and protein expression of the ERK/NF-κB signaling pathway.CONCLUSION These findings suggest that acupuncture at Back-Shu point can inhibit the ERK/NF-κB signaling pathway and treat insomnia by increasing the release of inflammatory cytokines in the hippocampus.展开更多
Recent clinical and experimental studies have confirmed the effects of Xinfuli Granule (XG), a compound Chinese medicine in the prevention and treatment of heart failure (HF). This study aimed to investigate the effec...Recent clinical and experimental studies have confirmed the effects of Xinfuli Granule (XG), a compound Chinese medicine in the prevention and treatment of heart failure (HF). This study aimed to investigate the effects and the mechanisms of XG on ventricular reconstruction in rats with acute myocardial infarction (AMI).MethodsSprague-Dawley rats were subjected to left anterior descending branch ligation. The rats that survived 24 h were randomly assigned to five groups: medium-dose of XG group (MI+XGM), high-dose of XG group (MI+XGH), carvedilol group (MI+C), medium-dose of XG + carvedilol group (MI+C+XGM). Fourteen rats underwent identical surgical procedures without artery ligation, serving as sham controls. At 28 days, left ventricular weight to body weight (LVW/BW) and heart weight to body weight (HW/BW) were calculated; left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), left ventricular internal diameter at systole (LVIDS) were measured by ultrasound; HE staining, Masson staining, and Sirius red staining were used to assess the myocardial pathological and physiological changes as well as myocardial fibrosis area and non-infarct zone I/III collagen ratio. Expression of Smad3 were detected and analyzed by Western blot, immunohistochemistry and immunofluorescence. P-Smad3, Smad2 and Smad7 in the TGF-β/Smads signaling pathway were also analyzed by Western blot.ResultsThe LVIDS (P < 0.01), HW/BW (P < 0.05), type I/III collagen ratio (P < 0.01) and myocardial collagen (P < 0.01) decreased significantly while the LVW/BW, LVFS (P < 0.05) increased significantly in MI+XGM group as compared with those in other groups. The expression of key signal molecules of the TGF-β/Smads signaling pathway, including Smad3, P-Smad3 and Smad2 protein were decreased, while the expression of Smad7 increased in both XG and carvedilol treatment groups as compared to those of the MI group (all P < 0.01). Immunohistochemistry and immunofluorescence further confirmed the down-regulated Smad3 expression.ConclusionXG can improve ventricular reconstruction and inhibit myocardial fibrosis in rats with AMI by regulating TGF-β/Smads signaling pathway.展开更多
Although several studies confirmed that berberine may attenuate airway inflammation in mice with chronic obstructive pulmonary disease(COPD),its underlying mechanisms were not clear until now.We aimed to establish an ...Although several studies confirmed that berberine may attenuate airway inflammation in mice with chronic obstructive pulmonary disease(COPD),its underlying mechanisms were not clear until now.We aimed to establish an experiment mouse model for COPD and to investigate the effects of berberine on airway inflammation and its possible mechanism in COPD model mice induced by cigarette smoke extract(CSE).Twenty SPF C57BL/6 mice were randomly divided into PBS control group,COPD model group,low-dose berberine group and high-dose berberine group,5 mice in each group.The neutrophils and macrophages were examined by Wright's staining.The levels of inflammatory cytokines TNF-α and IL-6 in bronchoalveolar lavage fluid(BALF)were detennined by enzyme-linked immunosorbent assay.The expression levels of TGF-β1,Smad2 and Smad3 mRNA and proteins in lung tissues were respectively detected by quantitative real-time polymerase chain reaction and Western blotting.It was found that CSE increased the number of inflammation cells in BALF,elevated lung inflammation scores,and enhanced the TGF-β1/Smads signaling activity in mice.High-dose berberine restrained the alterations in the COPD mice induced by CSE.It was concluded that high-dose berberine ameliorated CSE-induced airway inflammation in COPD mice.TGF-β1/Smads signaling pathway might be involved in the mechanism.These findings suggested a therapeutic potential of high-dose berberine on the CSE-induced airway inflammation.展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins ...Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair.These proteins are thus candidate targets for spinal cord injury therapy.Our previous studies demonstrated that 810 nm photo biomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals.However,the specific mechanism and potential targets involved remain to be clarified.In this study,to investigate the therapeutic effect of photo biomodulation,we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm~2 for 50 minutes once a day for 7 consecutive days.We found that photobiomodulation greatly restored motor function in mice and down regulated chondroitin sulfate proteoglycan expression in the injured spinal cord.Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury,and versican,a type of proteoglycan,was one of the most markedly changed molecules.Immunofluorescence staining showed that after spinal cord injury,versican was present in astrocytes in spinal cord tissue.The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction,whereas photobiomodulation inhibited the expression of ve rsican.Furthermore,we found that the increased levels of p-Smad3,p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204,(E)-SIS3,and SB 202190.This suggests that Sma d 3/Sox9 and MAP K/Sox9 pathways may be involved in the effects of photobiomodulation.In summary,our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans,and versican is one of the key target molecules of photo biomodulation.MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photo biomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.展开更多
[Objectives]This study aimed to investigate the effects of lignans from seeds of Herpetospermum caudigerum Wall.(SHC)on expression of TGF-β/Smads in liver tissue of hepatic alcohol-injuried rats,and to explore its pr...[Objectives]This study aimed to investigate the effects of lignans from seeds of Herpetospermum caudigerum Wall.(SHC)on expression of TGF-β/Smads in liver tissue of hepatic alcohol-injuried rats,and to explore its protective mechanism.[Methods]A total of 60 SD rats were randomly divided into six groups.The rats in all the groups except those in the normal group were given with white spirit by gavage for 8 weeks to establish alcoholic liver injury models.After rat models were established successfully,they were administered intragastrically with 400,200 and 100 mg/kg of lignans,respectively.The rats in the normal group were administered intragastrically with 50 mg/kg of silymarin.The administration lasted for 8 weeks,once a day.The changes in the general state,liver tissue pathology and collagen deposition of the rats were observed.The expression of TGF-β,TGF-β1 receptor 1(TβR-I),TGF-β1 receptor 2(TβR-II),Smad2/p-Smad2 and Smad3/p-Smad3 in the hepatic tissue was detected.[Results]The expression levels of TGF-β1,Smad2,p-Smad2,and p-Smad3 significantly declined,and the expression levels of TβR-I,TβR-II and Smad3 did not change significantly in the liver tissue of rats in the lignans groups and the expression levels of TGF-β,Smad2,and p-Smad3 significantly declined.Meanwhile,the expression levels of TβR-I,TβR-II,p-Smad2 and Smad3 did not change significantly in the silymarin group.[Conclusions]The lignans from SHC have significant intervention effects on alcoholic livery injury.The mechanism may be related to the inhibition of hepatic stellate cell(HSC)activation,TGF-βsecretion and p-Smad2,p-Smad3 expression in the signaling pathway.展开更多
Objective:To explore the relationship between the changes of miR145‑5p/Smads pathway and macrophage polarization in adjuvant arthritis rats.Methods:Twelve rats were divided into normal group and model group induced by...Objective:To explore the relationship between the changes of miR145‑5p/Smads pathway and macrophage polarization in adjuvant arthritis rats.Methods:Twelve rats were divided into normal group and model group induced by freund's complete adjuvant(0.1 mL/mouse)by random number table method,with 6 rats in each group.The expression of inflammatory polarization markers IL‑8 and CD206 in synovial tissue was detected by enzyme‑linked immunosorbent assay on the 12th day after the formation of arthritis in rats.Western blotting was used to detect the expression of TGF‑β1/Smads pathway factors in synovial tissues.The expression of miR145‑5P,Smads3 and Smads7 in synovial tissue was detected by RT‑qPCR.Results:Compared with normal group,the expression levels of IL‑8,TGF‑β1 and Smad3 in model group were significantly increased(P<0.05);The expression levels of CD206,Smad7 and miR145‑5P were significantly decreased(P<0.01).The correlation results showed that IL‑8 was positively correlated with Smad3(P<0.01),IL‑8 was negatively correlated with Smad7(P<0.05),CD206 was negatively correlated with Smad3(P<0.01)and positively correlated with Smad7(P<0.05).miR145‑5p was negatively correlated with Smad3(P<0.01)and positively correlated with Smad7(P<0.01).Conclusion:miR145‑5p may inhibit the overactivation of TGF‑β1/Smads pathway,regulate macrophage polarization,and inhibit the development of adjuvant arthritis by inhibiting Smad3 expression.展开更多
imbalance of synovial macrophages in patients with rheumatoid arthritis(RA).Methods:Human mononuclear cells(THP‑1)at logarithmic growth stage were induced into M1‑type macrophages,and RA synovial fibroblasts M1‑type m...imbalance of synovial macrophages in patients with rheumatoid arthritis(RA).Methods:Human mononuclear cells(THP‑1)at logarithmic growth stage were induced into M1‑type macrophages,and RA synovial fibroblasts M1‑type macrophages were co‑cultured into synovial macrophages.Synovial macrophages were divided into four groups:RA group(blank group),TGF‑β1 group(model group)and miR145‑5P overexpression group(TGF‑β1+miR145‑5P mimics group)and miR145‑5P overexpression negative control group(TGF‑β1+miR145‑5P‑mimics‑NC group).The blank group did not receive any treatment,and the other three groups were induced by TGF‑β1 in the medium for 48 h.Transfection miR145‑5p mimic and miR145‑5P‑mimics‑NC were added to co‑culture medium,and IL‑6,IL‑6 and IL‑6 of synovial macrophages were detected by ELISA.CD163 expression.Rt‑qpcr was used to detect miR145‑5p mRNA,TGF‑β1mRNA,Smad3mRNA,Smad7mRNA expression level.The expression of TGF‑β1/Smads pathway related proteins was detected by Western Blotting.Results:Compared with blank group,IL‑6 level was up‑regulated(P<0.01),and CD163 level was down‑regulated in model group(P<0.05),suggesting that TGF‑β1 could induce intensified immune inflammatory response.Compared with the negative miR145‑5P overexpression control group and model group,The expression of miR145‑5P overexpression group molecule CD163 was significantly increased by ELISA(P<0.01),and the expression of inflammatory factor IL‑6 was decreased(P<0.05).PCR showed that miR145‑5P mRNA expression level was significantly increased in miR145‑5P overexpression group,Smad3 mRNA and TGF‑β1 mRNA were significantly decreased,and Smad7 mRNA was significantly increased(P<0.01).WB method showed that the anti‑inflammatory protein Smad7 was significantly increased,while TGF‑β1 and Smad3 were significantly decreased(P<0.01).Transwell chamber results confirmed that miR145‑5P overexpression group significantly reduced macrophage invasion(P<0.01).Correlation analysis showed that miR145‑5P was negatively correlated with Smad3 and positively correlated with Smad7(P<0.01).Conclusion:miR145‑5P may inhibit macrophage polarization in RA patients by targeting Smad3 protein,negatively regulating TGF‑β1/Smads pathway,and alleviating immune inflammation.展开更多
基金the China’s National Key Research and Development Program Projects(No.2022YFC3500500 and No.2022YFC3500502).
文摘Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.
基金This research was supported by the Chongqing Science and Health Joint Medical Research Project(2020FYYX150).
文摘Background:Glioblastoma,a notably malignant tumor within the central nervous system,is distinguished by its aggressive behavior.Silvestrol,a robust inhibitor of the RNA helicase eukaryotic initiation factor 4A(eIF4A),has shown significant potential as an anticancer compound.Yet,the impact of silvestrol on glioblastoma,especially its molecular mechanisms,has not been fully elucidated.Methods:This investigation employed a variety of in vitro assays,such as cell counting kit-8(CCK-8),clonogenic,5-ethynyl-2′-deoxyuridine(EDU),wound healing,and flow cytometry,to evaluate cell cycle progression,apoptosis,cell viability,and migration.Western blot analysis was also performed to study the apoptosis and extracellular regulated kinase(ERK)pathways.After the ERK pathway was inhibited,differentially expressed genes(DEGs)in U87 cells were identified,followed by an analysis of target genes using the gene expression profiling interactive analysis(GEPIA)database.Results:Silvestrol significantly suppressed the proliferation,migration,and colony formation of glioma cells.It caused cell cycle arrest and enhanced apoptosis in these cells.Additionally,silvestrol stimulated the ERK pathway,with these effects being reversible by an ERK phosphorylation inhibitor.Transcriptome combined with GEPIA,GSCA,UALCAN,TIMER database screened 4 potential drug targets of silvestrol:chromosome 1 open reading frame 226(C1ORF226),mannosidase beta A(MANBA),IQ motif and Sec7 domain 2(IQSEC2),neuregulin 1(NRG-1).Among them,C1ORF226 was lower risk gene while MANBA,IQSEC2,and NRG-1 were high-risk genes.Furthermore,silvestrol notably reduced MANBA mRNA levels,which could be reversed by inhibiting ERK phosphorylation.Furthermore,silvestrol markedly decreased NRG-1 protein levels,with an additional reduction observed when the ERK pathway was blocked.Conclusion:Silvestrol’s anti-glioma effects are primarily due to the suppression of MANBA expression via the ERK pathway and possibly by hindering the translation of NRG-1 protein,thus reducing its expression.The downregulation of MANBA and NRG-1 proteins may be crucial in hindering glioma development and progression.These results highlight the intricate relationship between the ERK pathway and gene expression regulation in silvestrol’s therapeutic effectiveness against glioma.
基金Beijing Natural Science Foundation,Grant/Award Number:L222145 and L222030Emerging Engineering Interdisciplinary Project and the Fundamental Research Funds for the Central Universities,Grant/Award Number:PKU2022XGK008Peking University Medicine Fund of Fostering Young Scholars’Scientific&Technological Innovation,Grant/Award Number:BMU2022PY010。
文摘Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.
基金Middle-young Subject Backbone Training Projects(No.FCYY201710)
文摘Objective:To investigate the expression of miR-195 in intrauterine adhesion(IUA)and its relationship with TGF-β1/Smads and FGF2/FGFR1/ERK pathways.Methods:118 cases of IUA patients who underwent hysteroscopic treatment in our hospital between September 2017 and February 2019 were regarded as IUA group,80 cases of dysfunctional uterine bleeding patients who underwent hysteroscopic curettage in our hospital during the same period were regarded as control group.Differences in the expression levels of miR-195 as well as TGF-β1/Smads and FGF2/FGFR1/ERK signaling pathway-related molecules in the focal tissues obtained by hysteroscopy were compared between the two groups.Pearson test was used to evaluate the correlation of miR-195 expression in the intrauterine adhesion tissues with TGF-β1/Smads and FGF2/FGFR1/ERK pathways in IUA patients.Results:miR-195 expression in intrauterine adhesion tissues of IUA group was higher than that in endometrial tissues of control group(P<0.05).TGF-β1,Smad2 and Smad3 mRNA expression in intrauterine adhesion tissues of IUA group were higher than those in endometrial tissues of control group;FGF2,FGFR1 and ERK mRNA expression in intrauterine adhesion tissues were higher than those in endometrial tissues of control group(P<0.05).Pearson test showed that the miR-195 expression in intrauterine adhesion tissues of IUA group was positively correlated with the TGF-β1/Smads pathway-related molecules TGF-β1,Smad2 and Smad3 mRNA expression,and positively correlated with the FGF2/FGFR1/ERK pathway-related molecules FGF2,FGFR1 and ERK mRNA expression(P<0.05).Conclusion:miR-195 is highly expressed in IUA lesion tissues and may promote disease progression by activating TGF-β1/Smads and FGF2/FGFR1/ERK signaling pathways.
文摘目的研究ERK1/2信号通路在左归丸含药血清调控MC3T3-E1细胞基因表达中的作用。方法以倍美力为阳性对照药,对SD♀大鼠灌服高、中、低剂量的左归丸混悬液,d7腹主动脉取血分离含药血清。采用MTT法检测左归丸含药血清和PD98059对MC3T3-E1细胞增殖作用的影响,采用Western blot法检测ERK1/2蛋白的磷酸化水平及TGF-β1、Smad4蛋白表达,采用Real Time RT-PCR法检测Cbfα1、COLⅠmRNA表达。结果左归丸含药血清和倍美力能促进MC3T3-E1细胞增殖,诱导ERK1/2蛋白的磷酸化,促进TGF-β1、Smad4蛋白分泌,上调其Cbfα1、COLⅠmRNA表达;加入PD98059后MC3T3-E1细胞增殖下降、ERK1/2蛋白的磷酸化水平降低、TGF-β1蛋白表达进一步升高、Smad4蛋白表达降低、Cbfα1、COLⅠmRNA表达下调。结论左归丸能有效促进成骨细胞增殖和分化;左归丸可能是通过发挥雌激素样作用调控了ERK/Smads信号通路,从而达到防治骨质疏松的目的。
基金the National Key Research and Development Program of China,No.2017YFC0908104National Science and Technology Projects,No.2017ZX10203201,No.2017ZX10201201,and No.2017ZX10202202.
文摘BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis.
文摘BACKGROUND Insomnia is a disease where individuals cannot maintain a steady and stable sleep state or fail to fall asleep.Western medicine mainly uses sedatives and hypnotic drugs to treat insomnia,and long-term use is prone to drug resistance and other adverse reactions.Acupuncture has a good curative effect and unique advantages in the treatment of insomnia.AIM To explore the molecular mechanism of acupuncture at Back-Shu point for the treatment of insomnia.METHODS We first prepared a rat model of insomnia,and then carried out acupuncture for 7 consecutive days.After treatment,the sleep time and general behavior of the rats were determined.The Morris water maze test was used to assess the learning ability and spatial memory ability of the rats.The expression levels of inflammatory cytokines in serum and the hippocampus were detected by ELISA.qRTPCR was used to detect the mRNA expression changes in the ERK/NF-κB signaling pathway.Western blot and immunohistochemistry were carried out to evaluate the protein expression levels of RAF-1,MEK-2,ERK1/2 and NF-κB.RESULTS Acupuncture can prolong sleep duration,and improve mental state,activity,diet volume,learning ability and spatial memory.In addition,acupuncture increased the release of 1L-1β,1L-6 and TNF-αin serum and the hippocampus and inhibited the mRNA and protein expression of the ERK/NF-κB signaling pathway.CONCLUSION These findings suggest that acupuncture at Back-Shu point can inhibit the ERK/NF-κB signaling pathway and treat insomnia by increasing the release of inflammatory cytokines in the hippocampus.
文摘Recent clinical and experimental studies have confirmed the effects of Xinfuli Granule (XG), a compound Chinese medicine in the prevention and treatment of heart failure (HF). This study aimed to investigate the effects and the mechanisms of XG on ventricular reconstruction in rats with acute myocardial infarction (AMI).MethodsSprague-Dawley rats were subjected to left anterior descending branch ligation. The rats that survived 24 h were randomly assigned to five groups: medium-dose of XG group (MI+XGM), high-dose of XG group (MI+XGH), carvedilol group (MI+C), medium-dose of XG + carvedilol group (MI+C+XGM). Fourteen rats underwent identical surgical procedures without artery ligation, serving as sham controls. At 28 days, left ventricular weight to body weight (LVW/BW) and heart weight to body weight (HW/BW) were calculated; left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), left ventricular internal diameter at systole (LVIDS) were measured by ultrasound; HE staining, Masson staining, and Sirius red staining were used to assess the myocardial pathological and physiological changes as well as myocardial fibrosis area and non-infarct zone I/III collagen ratio. Expression of Smad3 were detected and analyzed by Western blot, immunohistochemistry and immunofluorescence. P-Smad3, Smad2 and Smad7 in the TGF-β/Smads signaling pathway were also analyzed by Western blot.ResultsThe LVIDS (P < 0.01), HW/BW (P < 0.05), type I/III collagen ratio (P < 0.01) and myocardial collagen (P < 0.01) decreased significantly while the LVW/BW, LVFS (P < 0.05) increased significantly in MI+XGM group as compared with those in other groups. The expression of key signal molecules of the TGF-β/Smads signaling pathway, including Smad3, P-Smad3 and Smad2 protein were decreased, while the expression of Smad7 increased in both XG and carvedilol treatment groups as compared to those of the MI group (all P < 0.01). Immunohistochemistry and immunofluorescence further confirmed the down-regulated Smad3 expression.ConclusionXG can improve ventricular reconstruction and inhibit myocardial fibrosis in rats with AMI by regulating TGF-β/Smads signaling pathway.
基金This work was supported by the National Natural Science Foundation of China(No.81400008).
文摘Although several studies confirmed that berberine may attenuate airway inflammation in mice with chronic obstructive pulmonary disease(COPD),its underlying mechanisms were not clear until now.We aimed to establish an experiment mouse model for COPD and to investigate the effects of berberine on airway inflammation and its possible mechanism in COPD model mice induced by cigarette smoke extract(CSE).Twenty SPF C57BL/6 mice were randomly divided into PBS control group,COPD model group,low-dose berberine group and high-dose berberine group,5 mice in each group.The neutrophils and macrophages were examined by Wright's staining.The levels of inflammatory cytokines TNF-α and IL-6 in bronchoalveolar lavage fluid(BALF)were detennined by enzyme-linked immunosorbent assay.The expression levels of TGF-β1,Smad2 and Smad3 mRNA and proteins in lung tissues were respectively detected by quantitative real-time polymerase chain reaction and Western blotting.It was found that CSE increased the number of inflammation cells in BALF,elevated lung inflammation scores,and enhanced the TGF-β1/Smads signaling activity in mice.High-dose berberine restrained the alterations in the COPD mice induced by CSE.It was concluded that high-dose berberine ameliorated CSE-induced airway inflammation in COPD mice.TGF-β1/Smads signaling pathway might be involved in the mechanism.These findings suggested a therapeutic potential of high-dose berberine on the CSE-induced airway inflammation.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
基金supported by the National Natural Science Foundation of China,Nos.81070996(to ZW),81572151(to XH)Shaanxi Provincial Key R&D Program,Nos.2020ZDLSF02-05(to ZW),2021ZDLSF02-10(to XH)+1 种基金Everest Project of Military Medicine of Air Force Medical University,No.2018RCFC02(to XH)Boosting Project of the First Affiliated Hospital of Air Force Medical University,No.XJZT19Z22(to ZW)。
文摘Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair.These proteins are thus candidate targets for spinal cord injury therapy.Our previous studies demonstrated that 810 nm photo biomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals.However,the specific mechanism and potential targets involved remain to be clarified.In this study,to investigate the therapeutic effect of photo biomodulation,we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm~2 for 50 minutes once a day for 7 consecutive days.We found that photobiomodulation greatly restored motor function in mice and down regulated chondroitin sulfate proteoglycan expression in the injured spinal cord.Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury,and versican,a type of proteoglycan,was one of the most markedly changed molecules.Immunofluorescence staining showed that after spinal cord injury,versican was present in astrocytes in spinal cord tissue.The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction,whereas photobiomodulation inhibited the expression of ve rsican.Furthermore,we found that the increased levels of p-Smad3,p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204,(E)-SIS3,and SB 202190.This suggests that Sma d 3/Sox9 and MAP K/Sox9 pathways may be involved in the effects of photobiomodulation.In summary,our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans,and versican is one of the key target molecules of photo biomodulation.MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photo biomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.
基金Graduates'Innovation Project of Southwest Minzu University(CX2016SZ032)National Natural Science Foundation of China(81274168,81573563)Scientific Research Project of Sichuan Provincial Administration of TCM(2016C062).
文摘[Objectives]This study aimed to investigate the effects of lignans from seeds of Herpetospermum caudigerum Wall.(SHC)on expression of TGF-β/Smads in liver tissue of hepatic alcohol-injuried rats,and to explore its protective mechanism.[Methods]A total of 60 SD rats were randomly divided into six groups.The rats in all the groups except those in the normal group were given with white spirit by gavage for 8 weeks to establish alcoholic liver injury models.After rat models were established successfully,they were administered intragastrically with 400,200 and 100 mg/kg of lignans,respectively.The rats in the normal group were administered intragastrically with 50 mg/kg of silymarin.The administration lasted for 8 weeks,once a day.The changes in the general state,liver tissue pathology and collagen deposition of the rats were observed.The expression of TGF-β,TGF-β1 receptor 1(TβR-I),TGF-β1 receptor 2(TβR-II),Smad2/p-Smad2 and Smad3/p-Smad3 in the hepatic tissue was detected.[Results]The expression levels of TGF-β1,Smad2,p-Smad2,and p-Smad3 significantly declined,and the expression levels of TβR-I,TβR-II and Smad3 did not change significantly in the liver tissue of rats in the lignans groups and the expression levels of TGF-β,Smad2,and p-Smad3 significantly declined.Meanwhile,the expression levels of TβR-I,TβR-II,p-Smad2 and Smad3 did not change significantly in the silymarin group.[Conclusions]The lignans from SHC have significant intervention effects on alcoholic livery injury.The mechanism may be related to the inhibition of hepatic stellate cell(HSC)activation,TGF-βsecretion and p-Smad2,p-Smad3 expression in the signaling pathway.
基金Natural Science Research Project of Universities in Anhui Province(NO.KJ2020A0396)。
文摘Objective:To explore the relationship between the changes of miR145‑5p/Smads pathway and macrophage polarization in adjuvant arthritis rats.Methods:Twelve rats were divided into normal group and model group induced by freund's complete adjuvant(0.1 mL/mouse)by random number table method,with 6 rats in each group.The expression of inflammatory polarization markers IL‑8 and CD206 in synovial tissue was detected by enzyme‑linked immunosorbent assay on the 12th day after the formation of arthritis in rats.Western blotting was used to detect the expression of TGF‑β1/Smads pathway factors in synovial tissues.The expression of miR145‑5P,Smads3 and Smads7 in synovial tissue was detected by RT‑qPCR.Results:Compared with normal group,the expression levels of IL‑8,TGF‑β1 and Smad3 in model group were significantly increased(P<0.05);The expression levels of CD206,Smad7 and miR145‑5P were significantly decreased(P<0.01).The correlation results showed that IL‑8 was positively correlated with Smad3(P<0.01),IL‑8 was negatively correlated with Smad7(P<0.05),CD206 was negatively correlated with Smad3(P<0.01)and positively correlated with Smad7(P<0.05).miR145‑5p was negatively correlated with Smad3(P<0.01)and positively correlated with Smad7(P<0.01).Conclusion:miR145‑5p may inhibit the overactivation of TGF‑β1/Smads pathway,regulate macrophage polarization,and inhibit the development of adjuvant arthritis by inhibiting Smad3 expression.
基金Natural Science Research Project of Colleges and Universities in Anhui Province(No.kj2020a0396)。
文摘imbalance of synovial macrophages in patients with rheumatoid arthritis(RA).Methods:Human mononuclear cells(THP‑1)at logarithmic growth stage were induced into M1‑type macrophages,and RA synovial fibroblasts M1‑type macrophages were co‑cultured into synovial macrophages.Synovial macrophages were divided into four groups:RA group(blank group),TGF‑β1 group(model group)and miR145‑5P overexpression group(TGF‑β1+miR145‑5P mimics group)and miR145‑5P overexpression negative control group(TGF‑β1+miR145‑5P‑mimics‑NC group).The blank group did not receive any treatment,and the other three groups were induced by TGF‑β1 in the medium for 48 h.Transfection miR145‑5p mimic and miR145‑5P‑mimics‑NC were added to co‑culture medium,and IL‑6,IL‑6 and IL‑6 of synovial macrophages were detected by ELISA.CD163 expression.Rt‑qpcr was used to detect miR145‑5p mRNA,TGF‑β1mRNA,Smad3mRNA,Smad7mRNA expression level.The expression of TGF‑β1/Smads pathway related proteins was detected by Western Blotting.Results:Compared with blank group,IL‑6 level was up‑regulated(P<0.01),and CD163 level was down‑regulated in model group(P<0.05),suggesting that TGF‑β1 could induce intensified immune inflammatory response.Compared with the negative miR145‑5P overexpression control group and model group,The expression of miR145‑5P overexpression group molecule CD163 was significantly increased by ELISA(P<0.01),and the expression of inflammatory factor IL‑6 was decreased(P<0.05).PCR showed that miR145‑5P mRNA expression level was significantly increased in miR145‑5P overexpression group,Smad3 mRNA and TGF‑β1 mRNA were significantly decreased,and Smad7 mRNA was significantly increased(P<0.01).WB method showed that the anti‑inflammatory protein Smad7 was significantly increased,while TGF‑β1 and Smad3 were significantly decreased(P<0.01).Transwell chamber results confirmed that miR145‑5P overexpression group significantly reduced macrophage invasion(P<0.01).Correlation analysis showed that miR145‑5P was negatively correlated with Smad3 and positively correlated with Smad7(P<0.01).Conclusion:miR145‑5P may inhibit macrophage polarization in RA patients by targeting Smad3 protein,negatively regulating TGF‑β1/Smads pathway,and alleviating immune inflammation.