An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the...<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>展开更多
In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove...In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.展开更多
Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the ...Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is use...In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is used to study the asymptotic behaviour of Kuramoto-Sivashinsky equation and to construct the bifurcation diagrams.展开更多
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ...The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.展开更多
The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth ord...The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.展开更多
The cut tobacco transporting is the absolutely necessarily important tache, Whether the transportation process stability is a direct impact on production quality and manufacturing standards. The wind system is adopted...The cut tobacco transporting is the absolutely necessarily important tache, Whether the transportation process stability is a direct impact on production quality and manufacturing standards. The wind system is adopted by most tobacco companies because of it caused least disruptive of the cut tobacco structure and the pipe network layout of system is flexible, but the wind system is greater influence by itself, different control methods are caused greater difference of process indicators, for example essence and spice ingredients, moisture proportion and smoke flavor. Based on the above reasons, so we need to design the control method of wind system necessarily, in addition we must checkout the control accuracy opportunely, so that it is satisfied by the actual working conditions.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal ...Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.展开更多
An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method an...An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.展开更多
A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presen...A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in th...The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.展开更多
In this paper,we discuss the conforming finite element method for a modified interior transmission eigenvalues problem.We present a complete theoretical analysis for the method,including the a priori and a posteriori ...In this paper,we discuss the conforming finite element method for a modified interior transmission eigenvalues problem.We present a complete theoretical analysis for the method,including the a priori and a posteriori error estimates.The theoretical analysis is conducted under the assumption of low regularity on the solution.We prove the reliability and efficiency of the a posteriori error estimators for eigenfunctions up to higher order terms,and we also analyze the reliability of estimators for eigenvalues.Finally,we report numerical experiments to show that our posteriori error estimator is effective and the approximations can reach the optimal convergence order.The numerical results also indicate that the conforming finite element eigenvalues approximate the exact ones from below,and there exists a monotonic relationship between the conforming finite element eigenvalues and the refractive index through numerical experiments.展开更多
This paper is devoted to the error estimate for the iterative discontinuous Galerkin(IDG)method introduced in[P.Yin,Y.Huang and H.Liu.Commun.Comput.Phys.16:491-515,2014]to the nonlinear Poisson-Boltzmann equation.The ...This paper is devoted to the error estimate for the iterative discontinuous Galerkin(IDG)method introduced in[P.Yin,Y.Huang and H.Liu.Commun.Comput.Phys.16:491-515,2014]to the nonlinear Poisson-Boltzmann equation.The total error includes both the iteration error and the discretization error of the direct DG method to linear elliptic equations.For the DDG method,the energy error is obtained by a constructive approach through an explicit global projection satisfying interface conditions dictated by the choice of numerical fluxes.The L^(2) error of order O(h^(m+1))for polynomials of degree m is further recovered.The bounding constant is also shown to be independent of the iteration times.Numerical tests are given to validate the established convergence theory.展开更多
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
文摘<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>
文摘In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.
文摘Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
文摘In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is used to study the asymptotic behaviour of Kuramoto-Sivashinsky equation and to construct the bifurcation diagrams.
基金This work was supported in part by the National Science Foundation under grant DMS-1620288。
文摘The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.
文摘The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.
文摘The cut tobacco transporting is the absolutely necessarily important tache, Whether the transportation process stability is a direct impact on production quality and manufacturing standards. The wind system is adopted by most tobacco companies because of it caused least disruptive of the cut tobacco structure and the pipe network layout of system is flexible, but the wind system is greater influence by itself, different control methods are caused greater difference of process indicators, for example essence and spice ingredients, moisture proportion and smoke flavor. Based on the above reasons, so we need to design the control method of wind system necessarily, in addition we must checkout the control accuracy opportunely, so that it is satisfied by the actual working conditions.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金Subsidized by NSFC(11571274 and 11171269)the Ph.D.Programs Foundation of Ministry of Education of China(20110201110027)
文摘Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.
文摘An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.
基金Project supported by the National Natural Science Foundation of China (No. 60874039)Shanghai Leading Academic Discipline Project (No. J50101)
文摘A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.
基金Project supported by the National Natural Science Foundation of China (Nos. 10871022, 11061009, and 40821092)the National Basic Research Program of China (973 Program) (Nos. 2010CB428403, 2009CB421407, and 2010CB951001)the Natural Science Foundation of Hebei Province of China (No. A2010001663)
文摘The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.
基金supported by the National Natural Science Foundation of China(Nos.12261024,11561014)Science and Technology Planning Project of Guizhou Province(Guizhou Kehe fundamental research-ZK[2022]No.324).
文摘In this paper,we discuss the conforming finite element method for a modified interior transmission eigenvalues problem.We present a complete theoretical analysis for the method,including the a priori and a posteriori error estimates.The theoretical analysis is conducted under the assumption of low regularity on the solution.We prove the reliability and efficiency of the a posteriori error estimators for eigenfunctions up to higher order terms,and we also analyze the reliability of estimators for eigenvalues.Finally,we report numerical experiments to show that our posteriori error estimator is effective and the approximations can reach the optimal convergence order.The numerical results also indicate that the conforming finite element eigenvalues approximate the exact ones from below,and there exists a monotonic relationship between the conforming finite element eigenvalues and the refractive index through numerical experiments.
基金The authors thank the referees for valuable suggestionswhich led to significant improvements in this revised version.This work was supported by the National Science Foundation of USA under Grant DMS1312636by NSF Grant RNMS(Ki-Net)1107291.Huang’s work was supported by National Science Foundation of China under Grant 91430213.
文摘This paper is devoted to the error estimate for the iterative discontinuous Galerkin(IDG)method introduced in[P.Yin,Y.Huang and H.Liu.Commun.Comput.Phys.16:491-515,2014]to the nonlinear Poisson-Boltzmann equation.The total error includes both the iteration error and the discretization error of the direct DG method to linear elliptic equations.For the DDG method,the energy error is obtained by a constructive approach through an explicit global projection satisfying interface conditions dictated by the choice of numerical fluxes.The L^(2) error of order O(h^(m+1))for polynomials of degree m is further recovered.The bounding constant is also shown to be independent of the iteration times.Numerical tests are given to validate the established convergence theory.