The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or...The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or stabi-lity of power in any electric circuit,there are many circuit models are discussed in literature.However,they suffer to maintain the output voltage and not capable of maintaining power stability.To improve the performance in power stabilization,an efficient IC pattern based power factor maximization model(ICPFMM)in this article.The model is focused on improving the power stability with the use of IC(Inductor and Conductor)towards identifying most efficient circuit for the current duty cycle according to the input voltage,voltage in capacitor and output voltage required.The model with boost converter diverts the incoming voltage through number of conductors and inductors.By triggering specific inductor,a specific capacitor gets charged and a particular circuit gets on.The model maintains num-ber of IC(Inductor and Conductor)patterns through which the powerflow occurs.According to that,the pattern available,the mofset controls the level of power to be regulated through any circuit.From the pattern,the model computes the Cir-cuits Switching Loss and Circuits Conduction Loss for various circuits.Accord-ing to the input voltage,the model estimates Circuit Power Stabilization Support(CPSS)according to the voltage available in any capacitor and input voltage.Using the value of CPSS,the model trigger optimal number of circuits to maintain voltage stability.In this approach,more than one circuit has been triggered to maintain output voltage and to get charged.The proposed model not only main-tains power stability but also reduces the wastage in voltage which is not utilized.The proposed model improves the performance in voltage stability with less switching loss.展开更多
文摘【背景】随着规模化、集约化生产程度的不断提高,养殖过程中饲养空间受限、冷热环境不适等因素常使猪处于应激状态。内质网应激(endoplasmic reticulum stress,ERS)可能是最早期的应激反应,与细胞凋亡、代谢等方面有密切联系。肝脏是机体的主要代谢器官,猪养殖过程中由于人工操作(如断奶)、饲料霉变、温度变化和吸入有害气体等因素都会造成猪肝脏的ERS,不仅会造成肝脏损伤,还会引发肝脏的脂肪代谢紊乱和广泛的炎症反应,影响生产性能和繁殖性能。因此,深入探讨缓解ERS的有效措施,有助于减少猪养殖过程中的隐性损失。【目的】利用免疫沉淀联合质谱技术,从猪肝星状细胞中筛选在ERS条件下与葡萄糖调节蛋白94(GRP94)相互作用的细胞蛋白,为进一步探讨GRP94对猪肝星状细胞生物学功能的保护作用机理奠定基础。【方法】首先将GRP94抗体固定在谷胱甘肽亲和磁珠上,用亲和磁珠与ERS条件下或正常条件下猪肝星状细胞总蛋白进行孵育,与GRP94诱饵蛋白结合的蛋白复合物洗脱收集后,进行SDS-PAGE凝胶电泳验证。将验证成功的样品洗脱液进行液相色谱串联质谱(LC-MS/MS)检测,鉴定出正常条件和ERS条件下GRP94的互作蛋白。运用生物信息学在线软件对筛选的互作细胞蛋白进行GO富集、KEGG信号通路注释和蛋白互作网络分析,并对其中的互作蛋白之一波形蛋白(vimentin)进行免疫共沉淀验证。【结果】筛选到正常条件下与GRP94存在互作关系的蛋白146个,ERS条件下与GRP94存在互作关系的蛋白76个,在两种情况下都存在互作关系的蛋白44个。ERS条件下有互作关系的76个蛋白质主要参与凋亡过程负调控、肽段交联、泛素依赖型ERAD(endoplasmic reticulum associated degradation)过程和过氧化氢分解代谢等过程。其中参与凋亡过程负调控的GRP94互作蛋白有albumin、catalase、filament A、heat shock protein family A member 5、keratin 18和prohibin 2,说明GRP94可能与这些蛋白共同发挥抗凋亡作用。除此之外组成中间丝纤维的vimentin蛋白参与多个GO富集的通路,可能与GRP94有重要的互作关系。进一步的免疫共沉淀试验也证实,ERS条件下vimentin和GRP94之间确实存在互作关系。此外,某些ERS条件下特异性表达的GRP94互作蛋白(如peroxiredoxin、death inducer obliterator 1、catalase、glandular kallikrein、pyruvate kinase等)与抗凋亡有密切联系。【结论】ERS条件下,猪肝脏GRP94互作蛋白主要参与抗凋亡、对未折叠蛋白进行折叠和维护细胞内稳态相关的信号通路。该结论为下一步开展GRP94参与肝脏ERS调控机制的研究打下基础。
文摘The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or stabi-lity of power in any electric circuit,there are many circuit models are discussed in literature.However,they suffer to maintain the output voltage and not capable of maintaining power stability.To improve the performance in power stabilization,an efficient IC pattern based power factor maximization model(ICPFMM)in this article.The model is focused on improving the power stability with the use of IC(Inductor and Conductor)towards identifying most efficient circuit for the current duty cycle according to the input voltage,voltage in capacitor and output voltage required.The model with boost converter diverts the incoming voltage through number of conductors and inductors.By triggering specific inductor,a specific capacitor gets charged and a particular circuit gets on.The model maintains num-ber of IC(Inductor and Conductor)patterns through which the powerflow occurs.According to that,the pattern available,the mofset controls the level of power to be regulated through any circuit.From the pattern,the model computes the Cir-cuits Switching Loss and Circuits Conduction Loss for various circuits.Accord-ing to the input voltage,the model estimates Circuit Power Stabilization Support(CPSS)according to the voltage available in any capacitor and input voltage.Using the value of CPSS,the model trigger optimal number of circuits to maintain voltage stability.In this approach,more than one circuit has been triggered to maintain output voltage and to get charged.The proposed model not only main-tains power stability but also reduces the wastage in voltage which is not utilized.The proposed model improves the performance in voltage stability with less switching loss.