Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resul...Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.展开更多
Energy storage systems(ESS)and permanent magnet synchronous generators(PMSG)are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different c...Energy storage systems(ESS)and permanent magnet synchronous generators(PMSG)are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives.The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted.To improve the inertia response and frequency control capability,we propose a short-term frequency support strategy for the ESS and PMSG.To this end,the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion.The effectiveness of the proposed control strategy was verified using PSCAD/EMTDC.The simulations revealed that the proposed strategy could improve the maximum rate of change of the frequency nadir and maximum frequency excursion.Therefore,it provides a promising solution of ancillary services for frequency regulation of PMSG and ESS.展开更多
In this note, we define approximating minimal Q processes, whose paths can be constructed by approximating Markov chains in Ref. (3)By approximating minimal Q processes, we have constructed paths for a class of nonsti...In this note, we define approximating minimal Q processes, whose paths can be constructed by approximating Markov chains in Ref. (3)By approximating minimal Q processes, we have constructed paths for a class of nonsticky Q processes which contain the well-known Doob’s processes as a special case.展开更多
Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is...Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.展开更多
基金Under the auspices of the National Natural Science Fundation (No.41901121,42276234)Open Funding of Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research (No.LHGTXT-2024-004)+1 种基金Science and Technology Major Project of Ningbo (No.2022Z181)Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources (No.2023CZEPK04)。
文摘Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.
基金supported by Open Fund of National Engineering Research Center for Offshore Wind Power“Stabilization Mechanism and Control Technology of the Intelligent Wind-Storage Integration System Based on Voltage-Source and Self-Synchronizing Control(HSFD22007)”.
文摘Energy storage systems(ESS)and permanent magnet synchronous generators(PMSG)are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives.The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted.To improve the inertia response and frequency control capability,we propose a short-term frequency support strategy for the ESS and PMSG.To this end,the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion.The effectiveness of the proposed control strategy was verified using PSCAD/EMTDC.The simulations revealed that the proposed strategy could improve the maximum rate of change of the frequency nadir and maximum frequency excursion.Therefore,it provides a promising solution of ancillary services for frequency regulation of PMSG and ESS.
文摘In this note, we define approximating minimal Q processes, whose paths can be constructed by approximating Markov chains in Ref. (3)By approximating minimal Q processes, we have constructed paths for a class of nonsticky Q processes which contain the well-known Doob’s processes as a special case.
基金supported by the National Natural Science Foundation of China(U21A20478)Zhejiang Provincial Nature Science Foundation of China(LZ21F030004)Key-Area Research and Development Program of Guangdong Province(2018B010107002)。
文摘Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.