CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio...CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.展开更多
The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional...The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.展开更多
We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz c...We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz cells. The experiments were performed at 20 ℃ and the THz wave was transmitted vertically to the samples and detected on the other side. The experimental results suggest linear relation for the THz absorption coefficient and the water content of the crude oil emulsions in the observed range. The linear dependence facilitates high-precision measurements of the water content of crude oil. This suggests the potential of THz-TDS in determining the water concentration in crude oil and borehole fluid identification.展开更多
Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting mod...Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting modes on permeate flux and removal rate of chemical oxygen demand (COD_ Cr) were studied. The results show that the permeate flux of ultrafiltration membrane is influenced by pressure and temperature; practical pressure is chosen to be 0.30.7MPa for the PEG with molecular mass cut-offs of 8000 and 0.71.0 MPa for the PEG with molecular mass cut-offs of 2500; and the practical temperature is chosen to be 2532℃. Different operating modes of ultrafiltration also influence the permeate flux and removal rate of COD_ Cr. The ultrafiltration membrane of intermittent cross-flow operating mode is easier to be influenced by blocky polarization and contamination than that of sequential cross-flow operating mode. Removal rate of COD_ Cr in intermittent cross-flow and sequential cross-flow condition can be maintained at about 93%.展开更多
The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of ...The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70℃. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20℃. A non-ionic water soluble surfactant (Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content. The phase inversion from oil- oil emulsion occurred at 30 in-water emulsion to water-in- % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around 350 s^-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase.展开更多
A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the...A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the components are investigated. Acid fraction and asphaltene can form stable two-dimensional insoluble films on an air/water surface. The surface film pressure of acid fraction and asphaltene is higher and more stable than that of the other fractions. The surface film pressure of the fraction increases evidently under the basic condition (pH=12). The results show that the interfacial activity of acid fraction and asphaltene is superior to that of the other fractions and the basic condition is favorable to the stability of the O/W emulsion.展开更多
The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the c...The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the choices made relating to oil spill countermeasures. The water in crude oil emulsions were characterized using various techniques in this study. The environmental scanning electron microscopy observation of water droplets in the emulsions is also presented. It is a powerful tool in emulsion observations.展开更多
A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space b...A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.展开更多
Recent studies have shown that the highly susceptibility to oxidation ofα-linolenic acid(ALA)enriched emulsion delivery system was harmful for human health which limited their incorporation into functional food.Impac...Recent studies have shown that the highly susceptibility to oxidation ofα-linolenic acid(ALA)enriched emulsion delivery system was harmful for human health which limited their incorporation into functional food.Impacts of natural sesamol(SOH)and sesamin(SES)on stability of flaxseed oil-in-water emulsion were investigated.Results showed that SOH indicated higher antioxidant activity and significantly prolonged the time of emulsion oil-off by retarding oil droplet aggregation in a dose dependent manner throughout storage.Moreover,SOH showed substantial extended lag phase of lipid oxidation products,especially for secondary oxidation products(thiobarbituric acid-reactive substances,TBARS),with a maximum reduction of 70%with 800 M dosage.The antioxidative efficiency of SOH might relate to its strong ability of scavenging free radical and chelate transition metal.Furthermore,SOH significantly enhanced interfacial barrier property and reduced permeation rate of peroxyl radical across emulsion interface by hydrogen bonds between sugar groups of saponin molecules and SOH.However,no obvious change in barrier property of emulsion was observed in SES.SOH improved physicochemical property of flaxseed oil-in-water emulsion with higher antioxidant activity and stronger interfacial barrier property,so that it could be serve as plant-based antioxidant in oil-in-water emulsion delivery system.展开更多
Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Th...Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Thus, the waxy crude oil emulsion viscoelastic behavior for deep sea transportation and restarting pipeline safety is particularly important. By means of MASIII HAAKE rheometer which is produced by German company, waxy crude oil emulsion viscoelastic behavior is explored at different volumetric water contents and different shear stresses. By analyzing the rate of change of shear rate in the initial stage, the influence rules of viscoelastic properties were summarized, with the change of volumetric water content and the applied shear stress and based on the experimental results, the law of emulsion is explained from the micro level. It is proposed that brittle fracture exists between wax crystals, and flexible fracture was found in the interaction between water droplets and wax crystals.展开更多
With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant...With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant and salt,the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing diffi-culty.Herein,a novel flow-through electrode-based demulsification reactor(FEDR)was well designed for the treatment of saline O/W emulsion.In contrast to 53.7%for electrical demul-sification only and 80.3%for filtration only,the COD removal efficiency increased to 92.8%under FEDR system.Moreover,the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance.By observing the mor-phology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions,the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through elec-trode by sieving effect,subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode,leading to a high-performing demulsification.This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this...The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.展开更多
Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Cer...Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Ceramic membranes have been used to deal with O/W emulsions,for its outstanding characteristics of easy-operation,high-flux,and long-term stability.However,membrane fouling is still a challenge in the industrial application of ceramic membranes.Herein,antifouling ceramic membranes were fabricated by grafting zwitterions on the membrane surface via an environment-friendly two-step grafting method,which improves the antifouling property and permeability.Successful grafting of such zwitterion on the ceramic surface was assessed by the combination of FTIR and XPS characterization.More importantly,the hydration can be formed by electrostatic interactions layer on the modified membrane,which was confirmed by TGA characterization.The antifouling performance of prepared zwitterionic ceramic membranes in the separation of O/W emulsions was systematically tested.The results suggested that zwitterion can significantly improve the flux of ceramic ultrafiltration membrane,and can also improve antifouling property dramatically by reducing the irreversible fouling in the separation of O/W emulsions.Therefore,zwitterionic ceramic membranes hold promising potentials as an antifouling,highly efficient and green method in the practical purification of the O/W emulsions.展开更多
The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/...The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination.展开更多
The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous proble...The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.展开更多
Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment ...Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.展开更多
基金The financial supports received from the National Natural Science Foundation of China(Nos.22178378,22127812)。
文摘CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.
文摘The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.
基金sponsored jointly by the National Key Basic Research Program of China(No.2013CB328706)the Special-funded Program on National Key Scientific Instruments and Equipment Development(No.2012YQ140005)+1 种基金the Beijing National Science Foundation(No.4122064)the Science Foundation of China University of Petroleum(Beijing)(No.QZDX-2010-01 and KYJJ2012-06-27)
文摘We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz cells. The experiments were performed at 20 ℃ and the THz wave was transmitted vertically to the samples and detected on the other side. The experimental results suggest linear relation for the THz absorption coefficient and the water content of the crude oil emulsions in the observed range. The linear dependence facilitates high-precision measurements of the water content of crude oil. This suggests the potential of THz-TDS in determining the water concentration in crude oil and borehole fluid identification.
文摘Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting modes on permeate flux and removal rate of chemical oxygen demand (COD_ Cr) were studied. The results show that the permeate flux of ultrafiltration membrane is influenced by pressure and temperature; practical pressure is chosen to be 0.30.7MPa for the PEG with molecular mass cut-offs of 8000 and 0.71.0 MPa for the PEG with molecular mass cut-offs of 2500; and the practical temperature is chosen to be 2532℃. Different operating modes of ultrafiltration also influence the permeate flux and removal rate of COD_ Cr. The ultrafiltration membrane of intermittent cross-flow operating mode is easier to be influenced by blocky polarization and contamination than that of sequential cross-flow operating mode. Removal rate of COD_ Cr in intermittent cross-flow and sequential cross-flow condition can be maintained at about 93%.
文摘The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70℃. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20℃. A non-ionic water soluble surfactant (Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content. The phase inversion from oil- oil emulsion occurred at 30 in-water emulsion to water-in- % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around 350 s^-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase.
文摘A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the components are investigated. Acid fraction and asphaltene can form stable two-dimensional insoluble films on an air/water surface. The surface film pressure of acid fraction and asphaltene is higher and more stable than that of the other fractions. The surface film pressure of the fraction increases evidently under the basic condition (pH=12). The results show that the interfacial activity of acid fraction and asphaltene is superior to that of the other fractions and the basic condition is favorable to the stability of the O/W emulsion.
文摘The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the choices made relating to oil spill countermeasures. The water in crude oil emulsions were characterized using various techniques in this study. The environmental scanning electron microscopy observation of water droplets in the emulsions is also presented. It is a powerful tool in emulsion observations.
基金Supported by the Eleventh Five-Year Plan of national support (2007BAI26B03-04)
文摘A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.
基金financial support from the National Natural Science Foundation of China (31771938)the Earmarked Fund for China Agriculture Research System (CARS-14)partly based upon work supported by the National Institute of Food and Agriculture, USDA, Massachusetts Agricultural Experiment Station (MAS00491) and USDA, AFRI Grants (2016-08782)
文摘Recent studies have shown that the highly susceptibility to oxidation ofα-linolenic acid(ALA)enriched emulsion delivery system was harmful for human health which limited their incorporation into functional food.Impacts of natural sesamol(SOH)and sesamin(SES)on stability of flaxseed oil-in-water emulsion were investigated.Results showed that SOH indicated higher antioxidant activity and significantly prolonged the time of emulsion oil-off by retarding oil droplet aggregation in a dose dependent manner throughout storage.Moreover,SOH showed substantial extended lag phase of lipid oxidation products,especially for secondary oxidation products(thiobarbituric acid-reactive substances,TBARS),with a maximum reduction of 70%with 800 M dosage.The antioxidative efficiency of SOH might relate to its strong ability of scavenging free radical and chelate transition metal.Furthermore,SOH significantly enhanced interfacial barrier property and reduced permeation rate of peroxyl radical across emulsion interface by hydrogen bonds between sugar groups of saponin molecules and SOH.However,no obvious change in barrier property of emulsion was observed in SES.SOH improved physicochemical property of flaxseed oil-in-water emulsion with higher antioxidant activity and stronger interfacial barrier property,so that it could be serve as plant-based antioxidant in oil-in-water emulsion delivery system.
文摘Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Thus, the waxy crude oil emulsion viscoelastic behavior for deep sea transportation and restarting pipeline safety is particularly important. By means of MASIII HAAKE rheometer which is produced by German company, waxy crude oil emulsion viscoelastic behavior is explored at different volumetric water contents and different shear stresses. By analyzing the rate of change of shear rate in the initial stage, the influence rules of viscoelastic properties were summarized, with the change of volumetric water content and the applied shear stress and based on the experimental results, the law of emulsion is explained from the micro level. It is proposed that brittle fracture exists between wax crystals, and flexible fracture was found in the interaction between water droplets and wax crystals.
基金supported by the National Natural Science Foundation of China(Nos.22022606 and 52221004).
文摘With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant and salt,the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing diffi-culty.Herein,a novel flow-through electrode-based demulsification reactor(FEDR)was well designed for the treatment of saline O/W emulsion.In contrast to 53.7%for electrical demul-sification only and 80.3%for filtration only,the COD removal efficiency increased to 92.8%under FEDR system.Moreover,the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance.By observing the mor-phology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions,the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through elec-trode by sieving effect,subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode,leading to a high-performing demulsification.This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
基金the Indian Institute of Technology (Indian School of Mines), Dhanbad for providing necessary laboratory facilities and financial support
文摘The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.
基金financially supported by the National Natural Science Foundation of China (21921006, 21706115)the National Key Research and Development Program of China (2017YFC0403702)+1 种基金the Project for Marine Science and Technology Innovation of Jiangsu Province (HY2018-10)Jiangsu Students’ Innovation and Entrepreneurship Training Program (201810291044Z)
文摘Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Ceramic membranes have been used to deal with O/W emulsions,for its outstanding characteristics of easy-operation,high-flux,and long-term stability.However,membrane fouling is still a challenge in the industrial application of ceramic membranes.Herein,antifouling ceramic membranes were fabricated by grafting zwitterions on the membrane surface via an environment-friendly two-step grafting method,which improves the antifouling property and permeability.Successful grafting of such zwitterion on the ceramic surface was assessed by the combination of FTIR and XPS characterization.More importantly,the hydration can be formed by electrostatic interactions layer on the modified membrane,which was confirmed by TGA characterization.The antifouling performance of prepared zwitterionic ceramic membranes in the separation of O/W emulsions was systematically tested.The results suggested that zwitterion can significantly improve the flux of ceramic ultrafiltration membrane,and can also improve antifouling property dramatically by reducing the irreversible fouling in the separation of O/W emulsions.Therefore,zwitterionic ceramic membranes hold promising potentials as an antifouling,highly efficient and green method in the practical purification of the O/W emulsions.
文摘The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination.
基金the financial support provided by the National Natural Science Foundation of China(Nos.22108125,21971113,and 22175094)Independent Innovation of Agricultural Science and Technology in Jiangsu Province(Nos.CX(21)3166,and CX(21)3163)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210627)Doctor Project of Mass Entrepreneurship and Innovation in Jiangsu Province(No.JSSCBS20210549)Nanjing Science&Technology Innovation Project for Personnel Studying Abroad and Research Start-up Funding of Nanjing Forestry University(No.163020259)Q.C.Z.appreciates the funding support from City University of Hong Kong and Hong Kong Institute for Advanced Study,City University of Hong Kong.
文摘The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.
文摘Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.