以桑蚕业废弃物蚕沙为原料,氯化锌为活化剂,在900℃下高温活化得到蚕沙基生物多孔炭(biochar of silkworm excrement,BCSE)。利用氮气吸脱附、扫描电子显微镜、X射线衍射及傅里叶变换红外光谱对BCSE的理化性质进行表征分析,并测试其对...以桑蚕业废弃物蚕沙为原料,氯化锌为活化剂,在900℃下高温活化得到蚕沙基生物多孔炭(biochar of silkworm excrement,BCSE)。利用氮气吸脱附、扫描电子显微镜、X射线衍射及傅里叶变换红外光谱对BCSE的理化性质进行表征分析,并测试其对农药杀虫单和呋虫胺的协同吸附与脱附性能,以及吸附农药后的贮藏稳定性。结果表明:BCSE具有丰富的孔道结构,其最优材料BCSE-3的BET比表面积可达833.0m^(2)/g,对杀虫单和呋虫胺的单独吸附分别可达0.83mmol/g和1.43mmol/g,双组分协同吸附时两种农药的吸附容量和吸附速率与单组分相比都显著提升。同时贮藏稳定性结果也证明在54℃下两种农药在BCSE-3中都拥有长达35d以上的稳定性(农药降解率<2%),远超农业农村部对农药贮藏稳定性的要求。最后通过分子模拟计算发现,呋虫胺上高电子密度的含氧五元杂环与BCSE上苯环形成π-π相互作用是呋虫胺具有更高吸附量和更快吸附速率的主要原因,而杀虫单和呋虫胺间的氢键作用是二者混合吸附量大于单组分吸附量的主要原因。展开更多
MnO_(2)/biomass carbon nanocomposite was synthesized by a facile hydrothermal reaction.Silkworm excrement acted as a carbon precursor,which was activated by ZnCl_(2) and FeCl_(3) combining chemical agents under Ar atm...MnO_(2)/biomass carbon nanocomposite was synthesized by a facile hydrothermal reaction.Silkworm excrement acted as a carbon precursor,which was activated by ZnCl_(2) and FeCl_(3) combining chemical agents under Ar atmosphere.Thin and flower-like MnO_(2) nanowires were in-situ anchored on the surface of the biomass carbon.The biomass carbon not only offered high conductivity and good structural stability but also relieved the large volume expansion during the charge/discharge process.The obtained MnO_(2)/biomass carbon nanocomposite electrode exhibited a high specific capacitance(238 F·g^(-1) at 0.5 A·g^(-1))and a superior cycling stability with only 7% degradation after 2000 cycles.The observed good electrochemical performance is accredited to the materials’high specific surface area,multilevel hierarchical structure,and good conductivity.This study proposes a promising method that utilizes biological waste and broadens MnO_(2)-based electrode material application for next-generation energy storage and conversion devices.展开更多
Attaching more importance to the problem of animal excrement pollution is the premise of realizing the sustainable development of animal husbandry in Heilongjiang Province. With the constant expansion of the scale of ...Attaching more importance to the problem of animal excrement pollution is the premise of realizing the sustainable development of animal husbandry in Heilongjiang Province. With the constant expansion of the scale of breeding industry, the amount of animal excrement will increase greatly, corresponding to the increasing pressure on water and land. Therefore, for the sake of promoting the coordinated development of animal husbandry and the environment, this paper analyzed the status of animal excrement pollution in Heilongjiang Province. On this base, the paper suggested that we must control animal excrement pollution proceeding from reality by using administrative means, legal means, economic means and technical means.展开更多
文摘以桑蚕业废弃物蚕沙为原料,氯化锌为活化剂,在900℃下高温活化得到蚕沙基生物多孔炭(biochar of silkworm excrement,BCSE)。利用氮气吸脱附、扫描电子显微镜、X射线衍射及傅里叶变换红外光谱对BCSE的理化性质进行表征分析,并测试其对农药杀虫单和呋虫胺的协同吸附与脱附性能,以及吸附农药后的贮藏稳定性。结果表明:BCSE具有丰富的孔道结构,其最优材料BCSE-3的BET比表面积可达833.0m^(2)/g,对杀虫单和呋虫胺的单独吸附分别可达0.83mmol/g和1.43mmol/g,双组分协同吸附时两种农药的吸附容量和吸附速率与单组分相比都显著提升。同时贮藏稳定性结果也证明在54℃下两种农药在BCSE-3中都拥有长达35d以上的稳定性(农药降解率<2%),远超农业农村部对农药贮藏稳定性的要求。最后通过分子模拟计算发现,呋虫胺上高电子密度的含氧五元杂环与BCSE上苯环形成π-π相互作用是呋虫胺具有更高吸附量和更快吸附速率的主要原因,而杀虫单和呋虫胺间的氢键作用是二者混合吸附量大于单组分吸附量的主要原因。
基金financially supported by the project“National College Students’Innovation and Entrepreneurship Training Program”,China under grant No.190170009.
文摘MnO_(2)/biomass carbon nanocomposite was synthesized by a facile hydrothermal reaction.Silkworm excrement acted as a carbon precursor,which was activated by ZnCl_(2) and FeCl_(3) combining chemical agents under Ar atmosphere.Thin and flower-like MnO_(2) nanowires were in-situ anchored on the surface of the biomass carbon.The biomass carbon not only offered high conductivity and good structural stability but also relieved the large volume expansion during the charge/discharge process.The obtained MnO_(2)/biomass carbon nanocomposite electrode exhibited a high specific capacitance(238 F·g^(-1) at 0.5 A·g^(-1))and a superior cycling stability with only 7% degradation after 2000 cycles.The observed good electrochemical performance is accredited to the materials’high specific surface area,multilevel hierarchical structure,and good conductivity.This study proposes a promising method that utilizes biological waste and broadens MnO_(2)-based electrode material application for next-generation energy storage and conversion devices.
基金Graduate Innovative Research Project of Heilongjiang Province (YJSCX2007-0069HLJ)Community Research Project of National Research Institutes (2005DIA3J032)Science and Technology Research Project of Harbin (2007AA9CT121)
文摘Attaching more importance to the problem of animal excrement pollution is the premise of realizing the sustainable development of animal husbandry in Heilongjiang Province. With the constant expansion of the scale of breeding industry, the amount of animal excrement will increase greatly, corresponding to the increasing pressure on water and land. Therefore, for the sake of promoting the coordinated development of animal husbandry and the environment, this paper analyzed the status of animal excrement pollution in Heilongjiang Province. On this base, the paper suggested that we must control animal excrement pollution proceeding from reality by using administrative means, legal means, economic means and technical means.