The intensified monsoon increases summer rainfall and creates wet conditions in the Asian summer monsoon region during the early Holocene. Along with millennial-scale changes of the monsoon intensity, it is still uncl...The intensified monsoon increases summer rainfall and creates wet conditions in the Asian summer monsoon region during the early Holocene. Along with millennial-scale changes of the monsoon intensity, it is still unclear whether the boundary of the monsoon region changes according to monsoon variability. Investigations into the early Holocene environment in monsoon marginal zones are crucial for understanding the monsoon boundary changes. Zhuye Lake is located at the northwest edge of the Asian summer monsoon, the northern Qilian Mountains, which are less affected by modern summer monsoon water vapor. Previous studies have reached different conclusions regarding the early Holocene climatic and environmental changes based on different dating methods(^14C and OSL(optically stimulated luminescence)) and materials(shells, carbonate, pollen concentrates and bulk organic carbon). In this study, we synthesized 102 ^14C dates and 35 OSL dates from ten Holocene sedimentary sections and ten paleo-shorelines in the lake basin. A comparison between ages from different dating methods and materials generally shows that carbon reservoir effects are relatively slight in Zhuye Lake while the disordered chronologies are mainly related to the erosion processes and reworking effects. In addition, proxy data, including lithology, pollen, total organic carbon and carbonate, were collected from different sites of Zhuye Lake. According to the new synthesis, the early Holocene environment was relatively humid, associated with high runoff and lake water levels. The result indicates that the monsoon boundary moves to the north during the period of the intensified monsoon. A typical arid-area lake was formed during the mid-Holocene when carbonate accumulation and high organic matter contents were the main features of this period. The lake retreated strongly during the late Holocene, showing a drought trend. Overall, the lake evolution is generally consistent with the Holocene Asian summer monsoon change, showing the monsoon influence to monsoon marginal zones.展开更多
A total of 103 surface sediment samples collected from the water depth range of 15-3300 m along Vijaydurg-Karwar stretch of central west coast of India were analyzed for foraminiferal content. Relict benthic foraminif...A total of 103 surface sediment samples collected from the water depth range of 15-3300 m along Vijaydurg-Karwar stretch of central west coast of India were analyzed for foraminiferal content. Relict benthic foraminiferal assemblage was noted within 50--135 m water depth. The relict benthic foraminiferal assemblage that includes Amphistegina, Operculina and Alveolinella in sediment samples within the water depth of 85-- 135 m indicates presence of coral reef at this depth during Early Holocene. The presence of barnacle fouling on Relict foraminifera at 60--90 m confirms the paleo-shoreline. The shallow depth zone is characterized by presence of agglutinated relict foraminifera. The agglutinated forms indicate freshwater influx, which eventually increased the sea level and subsequently deteriorated the paleo-coral reef.展开更多
Pollen analyses of 85 samples from the San-jiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they re...Pollen analyses of 85 samples from the San-jiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they reach as high as 40%-60%, with the percentage of Picea varying inversely with that of Sabina. Similar results were obtained from another section in the Shiyang River drainage. Using modern ecological habitat relationship analogues, pol-len transport characteristics, and the overall pollen assem-blage, we propose that both Picea and Sabina pollen were transported by the river from the mountains at the upper reaches of the Shiyang River, and that the assemblage is more indicative of changes in upland vegetation than of local conditions near the section. This interpretation is supported by pollen data derived from surface samples, water samples, and riverbed samples. Using a moisture indicator (the Picea to Sabina ratio) and calculated pollen concentrations, we identify a series of展开更多
We present a230Th-dated stalagmite oxygen isotope(δ^18O)record from Loushanguan Cave in the Yangtze River valley,China.The^δ18O record,if viewed as a proxy of the Asian summer monsoon(ASM)intensity,provides an ASM h...We present a230Th-dated stalagmite oxygen isotope(δ^18O)record from Loushanguan Cave in the Yangtze River valley,China.The^δ18O record,if viewed as a proxy of the Asian summer monsoon(ASM)intensity,provides an ASM history for the early Holocene with clear centennial-scale variability.A significant approximately 200-yr cycle between 10.2 and 9.1 ka BP(before present,where"present"is defined as the year AD 1950),as revealed by spectral power analyses,is of global significance and is probably forced by the Suess or de Vries cycle of solar activity.Here,we explore a physical mechanism to explain the relationship between the solar activity and the ASM.A strong coherence between the ASM and El Ni?o–Southern Oscillation(ENSO)has been observed by performing crosswavelet analyses on this cycle.Our study suggests that a strong(weak)ASM state corresponds to a warm(cold)ENSO,which is consistent with modern meteorological observations but contrasts with previous studies on regions far from the Meiyu rainbelt.We argue that the centennial fluctuations of the ASM are a fundamental characteristic forced by the solar activity,with the ENSO variability as a mediator.The relationship between ENSO and the ASM displayed spatial heterogeneity on the centennial scale during the early Holocene,which is a more direct analogue to the observed modern interannual variability of the ASM.展开更多
Although tropical cyclones play a critical role in global climate changes,their long-term variations in the past are not well documented.In this article,a sediment core from the South Yellow Sea was studied in order t...Although tropical cyclones play a critical role in global climate changes,their long-term variations in the past are not well documented.In this article,a sediment core from the South Yellow Sea was studied in order to reveal the influence of tropical cyclones on depositional processes.Integrating the results of radiocarbon dating and sediment grain-size analysis,we show that the studied sequence was deposited during the Holocene and the sedimentary dynamics were stable and at a relatively low level,with a median grain-size range of 5.3-8.7μm.It is found that coarse particles were likely transported by highly dynamic depositional events.Based on the findings,a record of paleo-tropical cyclones was derived for the Early Holocene,and several intervals with a reduced influence of tropical cyclones were identified.In addition,it reveals a good agreement between the grain-size results and the changes in solar activity,monsoonal intensity,and the El Ni?o-Southern Oscillation.Overall,it can be concluded that the influence of tropical cyclones on the sedimentary evolution of the muddy zone of the South Yellow Sea was substantial during the Early Holocene on centennial timescales,and that solar maxima may control the intensity of tropical cyclones via strengthening the walker circulation over the tropical Pacific.展开更多
Microblade assemblages are among the most common prehistoric archaeological materials found on the Tibetan Plateau(TP)and are thought to indicate large scale migration to and settlement of the TP.Few microblade sites,...Microblade assemblages are among the most common prehistoric archaeological materials found on the Tibetan Plateau(TP)and are thought to indicate large scale migration to and settlement of the TP.Few microblade sites,however,have been systematically excavated,especially in the remotest,highest-elevation regions of the TP.The timing of the large-scale arrival,spread,and permanent settlement of people on the TP therefore remains controversial.In this paper,we report on a recently excavated site,Locality 3 of the Nwya Devu Site(ND3),located at 4600 meters above sea level(masl),near the shore of Ngoin Lake,on the interior TP.Our analyses reveal a fairly typical microblade technological orientation and two types of microblade cores:wedge-shaped and semi-conical,which are similar to those found throughout North China.Using Optically Stimulated Luminescence(OSL)dating and AMS^(14)C dating,the age of ND3 ranges from 11 to 10 ka.This date range indicates ND3 is the oldest microblade site yet recorded in the remote,high-elevation regions of the TP and thus provides important information about when and how hunter-gatherers using microblades began exploiting the higher altitudes of the TP.Taken together,studies at ND3 and throughout the TP suggest that a microblade adaptation is associated with the first prolonged human occupation of the plateau and that microblades played a significant role in mediating the risks and facilitating the mobility necessary to permanently inhabit the TP.展开更多
基金supported by the National Natural Science Foundation of China (41371009)the Fundamental Research Fund for the Central Universities (lzujbky-2013-127)
文摘The intensified monsoon increases summer rainfall and creates wet conditions in the Asian summer monsoon region during the early Holocene. Along with millennial-scale changes of the monsoon intensity, it is still unclear whether the boundary of the monsoon region changes according to monsoon variability. Investigations into the early Holocene environment in monsoon marginal zones are crucial for understanding the monsoon boundary changes. Zhuye Lake is located at the northwest edge of the Asian summer monsoon, the northern Qilian Mountains, which are less affected by modern summer monsoon water vapor. Previous studies have reached different conclusions regarding the early Holocene climatic and environmental changes based on different dating methods(^14C and OSL(optically stimulated luminescence)) and materials(shells, carbonate, pollen concentrates and bulk organic carbon). In this study, we synthesized 102 ^14C dates and 35 OSL dates from ten Holocene sedimentary sections and ten paleo-shorelines in the lake basin. A comparison between ages from different dating methods and materials generally shows that carbon reservoir effects are relatively slight in Zhuye Lake while the disordered chronologies are mainly related to the erosion processes and reworking effects. In addition, proxy data, including lithology, pollen, total organic carbon and carbonate, were collected from different sites of Zhuye Lake. According to the new synthesis, the early Holocene environment was relatively humid, associated with high runoff and lake water levels. The result indicates that the monsoon boundary moves to the north during the period of the intensified monsoon. A typical arid-area lake was formed during the mid-Holocene when carbonate accumulation and high organic matter contents were the main features of this period. The lake retreated strongly during the late Holocene, showing a drought trend. Overall, the lake evolution is generally consistent with the Holocene Asian summer monsoon change, showing the monsoon influence to monsoon marginal zones.
文摘A total of 103 surface sediment samples collected from the water depth range of 15-3300 m along Vijaydurg-Karwar stretch of central west coast of India were analyzed for foraminiferal content. Relict benthic foraminiferal assemblage was noted within 50--135 m water depth. The relict benthic foraminiferal assemblage that includes Amphistegina, Operculina and Alveolinella in sediment samples within the water depth of 85-- 135 m indicates presence of coral reef at this depth during Early Holocene. The presence of barnacle fouling on Relict foraminifera at 60--90 m confirms the paleo-shoreline. The shallow depth zone is characterized by presence of agglutinated relict foraminifera. The agglutinated forms indicate freshwater influx, which eventually increased the sea level and subsequently deteriorated the paleo-coral reef.
基金. This work was supported by the National Natural Science Foundation of China (Grant Nos. 49731010 and 49871072).
文摘Pollen analyses of 85 samples from the San-jiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they reach as high as 40%-60%, with the percentage of Picea varying inversely with that of Sabina. Similar results were obtained from another section in the Shiyang River drainage. Using modern ecological habitat relationship analogues, pol-len transport characteristics, and the overall pollen assem-blage, we propose that both Picea and Sabina pollen were transported by the river from the mountains at the upper reaches of the Shiyang River, and that the assemblage is more indicative of changes in upland vegetation than of local conditions near the section. This interpretation is supported by pollen data derived from surface samples, water samples, and riverbed samples. Using a moisture indicator (the Picea to Sabina ratio) and calculated pollen concentrations, we identify a series of
基金Supported by the National Natural Science Foundation of China(40701013,41877453,and 41572151)National Key Research and Development Program of China(2018YFA0605603)。
文摘We present a230Th-dated stalagmite oxygen isotope(δ^18O)record from Loushanguan Cave in the Yangtze River valley,China.The^δ18O record,if viewed as a proxy of the Asian summer monsoon(ASM)intensity,provides an ASM history for the early Holocene with clear centennial-scale variability.A significant approximately 200-yr cycle between 10.2 and 9.1 ka BP(before present,where"present"is defined as the year AD 1950),as revealed by spectral power analyses,is of global significance and is probably forced by the Suess or de Vries cycle of solar activity.Here,we explore a physical mechanism to explain the relationship between the solar activity and the ASM.A strong coherence between the ASM and El Ni?o–Southern Oscillation(ENSO)has been observed by performing crosswavelet analyses on this cycle.Our study suggests that a strong(weak)ASM state corresponds to a warm(cold)ENSO,which is consistent with modern meteorological observations but contrasts with previous studies on regions far from the Meiyu rainbelt.We argue that the centennial fluctuations of the ASM are a fundamental characteristic forced by the solar activity,with the ENSO variability as a mediator.The relationship between ENSO and the ASM displayed spatial heterogeneity on the centennial scale during the early Holocene,which is a more direct analogue to the observed modern interannual variability of the ASM.
基金supported by the National Key R&D Program of China (No.2018YFE0202401)the National Natural Science Foundation of China (Nos.41602349 and 41976192)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)(No.2022QNLM050203)
文摘Although tropical cyclones play a critical role in global climate changes,their long-term variations in the past are not well documented.In this article,a sediment core from the South Yellow Sea was studied in order to reveal the influence of tropical cyclones on depositional processes.Integrating the results of radiocarbon dating and sediment grain-size analysis,we show that the studied sequence was deposited during the Holocene and the sedimentary dynamics were stable and at a relatively low level,with a median grain-size range of 5.3-8.7μm.It is found that coarse particles were likely transported by highly dynamic depositional events.Based on the findings,a record of paleo-tropical cyclones was derived for the Early Holocene,and several intervals with a reduced influence of tropical cyclones were identified.In addition,it reveals a good agreement between the grain-size results and the changes in solar activity,monsoonal intensity,and the El Ni?o-Southern Oscillation.Overall,it can be concluded that the influence of tropical cyclones on the sedimentary evolution of the muddy zone of the South Yellow Sea was substantial during the Early Holocene on centennial timescales,and that solar maxima may control the intensity of tropical cyclones via strengthening the walker circulation over the tropical Pacific.
基金supported by the National Key Research and Development Project of China(Grant No.2021YFC1523603)the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0601)+1 种基金the National Natural Science Foundation of China(Grant Nos.42072033&41977380)the National Social Science Foundation of China(Grant Nos.23&ZD268&21@WTK001)。
文摘Microblade assemblages are among the most common prehistoric archaeological materials found on the Tibetan Plateau(TP)and are thought to indicate large scale migration to and settlement of the TP.Few microblade sites,however,have been systematically excavated,especially in the remotest,highest-elevation regions of the TP.The timing of the large-scale arrival,spread,and permanent settlement of people on the TP therefore remains controversial.In this paper,we report on a recently excavated site,Locality 3 of the Nwya Devu Site(ND3),located at 4600 meters above sea level(masl),near the shore of Ngoin Lake,on the interior TP.Our analyses reveal a fairly typical microblade technological orientation and two types of microblade cores:wedge-shaped and semi-conical,which are similar to those found throughout North China.Using Optically Stimulated Luminescence(OSL)dating and AMS^(14)C dating,the age of ND3 ranges from 11 to 10 ka.This date range indicates ND3 is the oldest microblade site yet recorded in the remote,high-elevation regions of the TP and thus provides important information about when and how hunter-gatherers using microblades began exploiting the higher altitudes of the TP.Taken together,studies at ND3 and throughout the TP suggest that a microblade adaptation is associated with the first prolonged human occupation of the plateau and that microblades played a significant role in mediating the risks and facilitating the mobility necessary to permanently inhabit the TP.