Green fluorescent protein (GFP) gene was successfully transferred into the isolated zygotes and early proembryos of wheat (Triticum aestivum L.) by electroporation. A frequency, as high as 46.7% of GFP gene transient ...Green fluorescent protein (GFP) gene was successfully transferred into the isolated zygotes and early proembryos of wheat (Triticum aestivum L.) by electroporation. A frequency, as high as 46.7% of GFP gene transient expression in early proembryos, was achieved under 150 V/cm electric field strength, 25 muF capacitor, 200 mug/mL of linear plasmid DNA and an electroporation buffer at pH 7.2. Compared with five-day-old proembryos, the zygotes and early proembryos needed lower optimum strength of electric field. After culturing in KM8p medium, the electroporated early proembryos divided and GFP gene expression was observed in daughter cells and subsequent divisions. There was no mosaicism of gene expression in the zygotes and 2-, 4- and 8-celled proembryos.展开更多
文摘Green fluorescent protein (GFP) gene was successfully transferred into the isolated zygotes and early proembryos of wheat (Triticum aestivum L.) by electroporation. A frequency, as high as 46.7% of GFP gene transient expression in early proembryos, was achieved under 150 V/cm electric field strength, 25 muF capacitor, 200 mug/mL of linear plasmid DNA and an electroporation buffer at pH 7.2. Compared with five-day-old proembryos, the zygotes and early proembryos needed lower optimum strength of electric field. After culturing in KM8p medium, the electroporated early proembryos divided and GFP gene expression was observed in daughter cells and subsequent divisions. There was no mosaicism of gene expression in the zygotes and 2-, 4- and 8-celled proembryos.