We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to comp...We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.展开更多
A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconse...A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.展开更多
A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighb...A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.展开更多
This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of proje...This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.展开更多
We have made an extensive numerical study of a modified model proposed by Olami,Feder,and Christensen to describe earthquake behavior.Two situations were considered in this paper.One situation is that the energy of th...We have made an extensive numerical study of a modified model proposed by Olami,Feder,and Christensen to describe earthquake behavior.Two situations were considered in this paper.One situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions were considered as well.By analyzing the distribution of earthquake sizes,we found that self-organized criticality can be excited only in the conservative case or the approximate conservative case in the above situations.Some evidence indicated that the critical exponent of both above situations and the original OFC model tend to the same result in the conservative case.The only difference is that the avalanche size in the original model is bigger.This result may be closer to the real world,after all,every crust plate size is different.展开更多
Western Sichuan and its vicinity are located in the juncture of three big active blocks, namely, the Chuandian (Sichuan and Yunnan), the Bayan Har and the South China blocks, on the eastern margin of the Qinghai-Xiz...Western Sichuan and its vicinity are located in the juncture of three big active blocks, namely, the Chuandian (Sichuan and Yunnan), the Bayan Har and the South China blocks, on the eastern margin of the Qinghai-Xizang(Tibet) Plateau. Many groups of active faults that are capable of generating earthquakes are developed there. Because there exist lateral secondary active faults, the Chuandian block can be further divided into the central Yumlan and northwestern Sichuan sub-blocks; while the Longmenshan sub-block can be divided on the east end of the Bayan Har block. Joint exploration of deep crustal structure shows that there exist low-velocity and high-conductivity layers in the crust of the Chuandian and Bayan Har blocks, which are one of the important factors that make the upper crust prone to earthquake. The results of geological study and modern GPS observation show that blocks of different orders all have SE- or SSE-trending sliding, clockwise rotation and upwelling movement; but there are some differences in amplitude. This paper has also given the geological or GPS slip rates of main active fault zones and discussed the main scientific problems still existing now.展开更多
Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great e...Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.展开更多
SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an ...SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an earthquake forecasting model. The main function of this system is to analyze and process the deformation, fluid, electromagnetic and other geophysical field observing data from ground-based observation, as well as space-based observation. Combined station and earthquake distributions, geological structure and other information, this system can provide a basic software platform for earthquake forecasting research based on spatiotemporal fusion. The hierarchical station tree for data sifting and the interaction mode have been innovatively developed in this SeisGuard system to improve users’ working efficiency. The data storage framework designed according to the characteristics of different time series can unify the interfaces of different data sources, provide the support of data flow, simplify the management and usage of data, and provide foundation for analysis of big data. The final aim of this development is to establish an effective earthquake forecasting model combined all available information from ground-based observations to space-based observations.展开更多
Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a ...Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.展开更多
A systematic study on ″ring phenomena″ frequently occurring before great earthquakes has made in this paper, which has analyzed the features of ring distributions before 16 great earthquakes and part of large ear...A systematic study on ″ring phenomena″ frequently occurring before great earthquakes has made in this paper, which has analyzed the features of ring distributions before 16 great earthquakes and part of large earthquakes in China and its boundary areas, and discussed their features of generality, regularity and predictive meaning. The results have showed that moderate earthquakes or larger earthquakes distribute around the epicenter like a ring from decades to hundred years before the great earthquakes of magnitude more than 7, which is a general phenomenon of great earthquakes without an exception. The active ring generally occurs in the areas from hundreds to thousands of kilometers from the epicenter(according to the magnitude). The seismicity in the ring has three basic stages with different features. in the first stage, seismicity remains at low level and the earthquakes distribute scatteredly, while the source area of the future great earthquake remains quiet; in the second stage, the seismicity strengthens, whose frequency, intensity, concentrated degree, released rate of strain and ratio of distributed area etc. increase, while the quiet area decreases or disappears; in the third stage, the seismicity is weaker than in the former stage, and the quiet area appears again. The source area surrounded by the active ring might have three periods of activity(called as early term, medium term and late term foreshocks activity). The length of the quiet area undergoes the process from large to small, then to large. Therefore, we can estimate the occurring place, magnitude and seismogenic stage of great earthquake according to the area,length and the seismicity in the active ring, which is valuable to make a long term prediction of great earthquakes. At last, we had a preliminary discussion on the mechanism of active ring formation.展开更多
The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical d...The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.展开更多
Since the 20 thcentury,the time intervals of M ≥6.7 strong earthquakes in the SichuanYunnan region show obvious regularity.Using the years of the strong events,a twodimensional time coordinate system is generated,bas...Since the 20 thcentury,the time intervals of M ≥6.7 strong earthquakes in the SichuanYunnan region show obvious regularity.Using the years of the strong events,a twodimensional time coordinate system is generated,based on which,the time prediction model is constructed for strong earthquakes in the Sichuan-Yunnan region.Prediction analysis shows that there is risk of generating four earthquakes with M ≥ 6.7 in the Sichuan-Yunnan region in the future 16 years,and there are strong signals for M ≥6.7earthquakes for periods 2012-2021 and 2025-2029.The strong earthquakes may occur around 2014-2015,2019 and 2027.展开更多
In this study,a broad range of supervised machine learning and parametric statistical,geospatial,and non-geospatial models were applied to model both aggregated observed impact estimate data and satellite image-derive...In this study,a broad range of supervised machine learning and parametric statistical,geospatial,and non-geospatial models were applied to model both aggregated observed impact estimate data and satellite image-derived geolocated building damage data for earthquakes,via regression-and classification-based models,respectively.For the aggregated observational data,models were ranked via predictive performance of mortality,population displacement,building damage,and building destruction for 375 observations across 161 earthquakes in 61 countries.For the satellite image-derived data,models were ranked via classification performance(damaged/unaff ected)of 369,813 geolocated buildings for 26 earthquakes in 15 countries.Grouped k-fold,3-repeat cross validation was used to ensure out-of-sample predictive performance.Feature importance of several variables used as proxies for vulnerability to disasters indicates covariate utility.The 2023 Türkiye-Syria earthquake event was used to explore model limitations for extreme events.However,applying the AdaBoost model on the 27,032 held-out buildings of the 2023 Türkiye-Syria earthquake event,predictions had an AUC of 0.93.Therefore,without any geospatial,building-specific,or direct satellite image information,this model accurately classified building damage,with significantly improved performance over satellite image trained models found in the literature.展开更多
In this paper we simulate the repeated occurrence of strong earthquakes along a strike-slip fault by using a finite element model. The fault valve mechanism is included in the model in order to take into account the e...In this paper we simulate the repeated occurrence of strong earthquakes along a strike-slip fault by using a finite element model. The fault valve mechanism is included in the model in order to take into account the effeCt of POre fluid pressure variation. Five parameters are used to characterize the rheology of the fault, POre pressure variation, and fracture criteria. By Systematically varying these parameters and calculating a large number of models we carried out a preliminary investigation on the alternatively quiet and active periods of seismicity and their relation to model Parameters and loading conditions. Under the action of a constant-rate boundary movement, in the case of intermediate stress and pore pressure, the models display a regular quiescence-activity phenomenon with a cycle length of 1/3-1 of the recurrence pened. When the model is under high stress or high pore pressure, this phenomenon becomes irregular or inexplicit. When the model is subject to periedic boundary forces and the amplitude of force variation is not too small, it results in an alternatively quiet and active seismicity Pattern with the same Period Of the force variation.展开更多
Recurrence model for strong earthquakes on Fen Wei seismic belt is proposed on the basis of the collection and analysis of fault slip rate, paleoearthquake sequence, maximum displacement of each event etc. on 21 faul...Recurrence model for strong earthquakes on Fen Wei seismic belt is proposed on the basis of the collection and analysis of fault slip rate, paleoearthquake sequence, maximum displacement of each event etc. on 21 fault segments of the belt, which are active since late Late Pleistocene. And the long and intermediate term seismic potential of the belt has been evaluated through four approaches.展开更多
Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep fa...Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model) of isostatic gravity mechanisms (local versus regional) in this region to calculated the isostatic gravity anomaly (IGA). Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone. which is due to the Indian-Eurasian continental collision.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 50272022
文摘We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.
文摘A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.
文摘A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.
基金sponsored by the Specific Fund of Fundamental Research,Institute of Geophysics,China Earthquake Administration (DQJB16B19)
文摘This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.
基金Supported by National Natural Science Foundation of China under Grant Nos.11675096 and 11305098the Fundamental Research Funds for the Central Universities under Grant No.GK201702001+1 种基金FPALAB-SNNU under Grant No.16QNGG007Interdisciplinary Incubation Project of SNU under Grant No.5
文摘We have made an extensive numerical study of a modified model proposed by Olami,Feder,and Christensen to describe earthquake behavior.Two situations were considered in this paper.One situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions were considered as well.By analyzing the distribution of earthquake sizes,we found that self-organized criticality can be excited only in the conservative case or the approximate conservative case in the above situations.Some evidence indicated that the critical exponent of both above situations and the original OFC model tend to the same result in the conservative case.The only difference is that the avalanche size in the original model is bigger.This result may be closer to the real world,after all,every crust plate size is different.
文摘Western Sichuan and its vicinity are located in the juncture of three big active blocks, namely, the Chuandian (Sichuan and Yunnan), the Bayan Har and the South China blocks, on the eastern margin of the Qinghai-Xizang(Tibet) Plateau. Many groups of active faults that are capable of generating earthquakes are developed there. Because there exist lateral secondary active faults, the Chuandian block can be further divided into the central Yumlan and northwestern Sichuan sub-blocks; while the Longmenshan sub-block can be divided on the east end of the Bayan Har block. Joint exploration of deep crustal structure shows that there exist low-velocity and high-conductivity layers in the crust of the Chuandian and Bayan Har blocks, which are one of the important factors that make the upper crust prone to earthquake. The results of geological study and modern GPS observation show that blocks of different orders all have SE- or SSE-trending sliding, clockwise rotation and upwelling movement; but there are some differences in amplitude. This paper has also given the geological or GPS slip rates of main active fault zones and discussed the main scientific problems still existing now.
基金Ministry of Science and Technology Project (2004CB418406).
文摘Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.
文摘SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an earthquake forecasting model. The main function of this system is to analyze and process the deformation, fluid, electromagnetic and other geophysical field observing data from ground-based observation, as well as space-based observation. Combined station and earthquake distributions, geological structure and other information, this system can provide a basic software platform for earthquake forecasting research based on spatiotemporal fusion. The hierarchical station tree for data sifting and the interaction mode have been innovatively developed in this SeisGuard system to improve users’ working efficiency. The data storage framework designed according to the characteristics of different time series can unify the interfaces of different data sources, provide the support of data flow, simplify the management and usage of data, and provide foundation for analysis of big data. The final aim of this development is to establish an effective earthquake forecasting model combined all available information from ground-based observations to space-based observations.
文摘Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.
文摘A systematic study on ″ring phenomena″ frequently occurring before great earthquakes has made in this paper, which has analyzed the features of ring distributions before 16 great earthquakes and part of large earthquakes in China and its boundary areas, and discussed their features of generality, regularity and predictive meaning. The results have showed that moderate earthquakes or larger earthquakes distribute around the epicenter like a ring from decades to hundred years before the great earthquakes of magnitude more than 7, which is a general phenomenon of great earthquakes without an exception. The active ring generally occurs in the areas from hundreds to thousands of kilometers from the epicenter(according to the magnitude). The seismicity in the ring has three basic stages with different features. in the first stage, seismicity remains at low level and the earthquakes distribute scatteredly, while the source area of the future great earthquake remains quiet; in the second stage, the seismicity strengthens, whose frequency, intensity, concentrated degree, released rate of strain and ratio of distributed area etc. increase, while the quiet area decreases or disappears; in the third stage, the seismicity is weaker than in the former stage, and the quiet area appears again. The source area surrounded by the active ring might have three periods of activity(called as early term, medium term and late term foreshocks activity). The length of the quiet area undergoes the process from large to small, then to large. Therefore, we can estimate the occurring place, magnitude and seismogenic stage of great earthquake according to the area,length and the seismicity in the active ring, which is valuable to make a long term prediction of great earthquakes. At last, we had a preliminary discussion on the mechanism of active ring formation.
文摘The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.
文摘Since the 20 thcentury,the time intervals of M ≥6.7 strong earthquakes in the SichuanYunnan region show obvious regularity.Using the years of the strong events,a twodimensional time coordinate system is generated,based on which,the time prediction model is constructed for strong earthquakes in the Sichuan-Yunnan region.Prediction analysis shows that there is risk of generating four earthquakes with M ≥ 6.7 in the Sichuan-Yunnan region in the future 16 years,and there are strong signals for M ≥6.7earthquakes for periods 2012-2021 and 2025-2029.The strong earthquakes may occur around 2014-2015,2019 and 2027.
基金funded by the Engineering&Physical Sciences Research Council(EPSRC)Impact Acceleration Account Award EP/R511742/1。
文摘In this study,a broad range of supervised machine learning and parametric statistical,geospatial,and non-geospatial models were applied to model both aggregated observed impact estimate data and satellite image-derived geolocated building damage data for earthquakes,via regression-and classification-based models,respectively.For the aggregated observational data,models were ranked via predictive performance of mortality,population displacement,building damage,and building destruction for 375 observations across 161 earthquakes in 61 countries.For the satellite image-derived data,models were ranked via classification performance(damaged/unaff ected)of 369,813 geolocated buildings for 26 earthquakes in 15 countries.Grouped k-fold,3-repeat cross validation was used to ensure out-of-sample predictive performance.Feature importance of several variables used as proxies for vulnerability to disasters indicates covariate utility.The 2023 Türkiye-Syria earthquake event was used to explore model limitations for extreme events.However,applying the AdaBoost model on the 27,032 held-out buildings of the 2023 Türkiye-Syria earthquake event,predictions had an AUC of 0.93.Therefore,without any geospatial,building-specific,or direct satellite image information,this model accurately classified building damage,with significantly improved performance over satellite image trained models found in the literature.
文摘In this paper we simulate the repeated occurrence of strong earthquakes along a strike-slip fault by using a finite element model. The fault valve mechanism is included in the model in order to take into account the effeCt of POre fluid pressure variation. Five parameters are used to characterize the rheology of the fault, POre pressure variation, and fracture criteria. By Systematically varying these parameters and calculating a large number of models we carried out a preliminary investigation on the alternatively quiet and active periods of seismicity and their relation to model Parameters and loading conditions. Under the action of a constant-rate boundary movement, in the case of intermediate stress and pore pressure, the models display a regular quiescence-activity phenomenon with a cycle length of 1/3-1 of the recurrence pened. When the model is under high stress or high pore pressure, this phenomenon becomes irregular or inexplicit. When the model is subject to periedic boundary forces and the amplitude of force variation is not too small, it results in an alternatively quiet and active seismicity Pattern with the same Period Of the force variation.
文摘Recurrence model for strong earthquakes on Fen Wei seismic belt is proposed on the basis of the collection and analysis of fault slip rate, paleoearthquake sequence, maximum displacement of each event etc. on 21 fault segments of the belt, which are active since late Late Pleistocene. And the long and intermediate term seismic potential of the belt has been evaluated through four approaches.
基金supported by the China Earthquake Administration,Institute of Seismology Foundation(IS201416141)Spark Plan(XH17022)
文摘Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model) of isostatic gravity mechanisms (local versus regional) in this region to calculated the isostatic gravity anomaly (IGA). Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone. which is due to the Indian-Eurasian continental collision.