Two aspects of a new method,which can be used for seismic zoning,are introduced in this paper.On the one hand,the approach to estimate b value and annual activity rate proposed by Kijko and Sellevoll needs to use the ...Two aspects of a new method,which can be used for seismic zoning,are introduced in this paper.On the one hand,the approach to estimate b value and annual activity rate proposed by Kijko and Sellevoll needs to use the earthquake catalogue.The existing earthquake catalogue contains both historical and recent instrumental data sets and it is inadequate to use only one part.Combining the large number of historical events with recent complete records and taking the magnitude uncertainty into account,Kijko’s method gives the maximum likelihood estimation of b value and annual activity rate,which might be more realistic.On the other hand,this method considers the source zone boundary uncertainty in seismic hazard analysis,which means the earthquake activity rate across a boundary of a source zone changes smoothly instead of abruptly and avoids too large a gradient in the calculated results.展开更多
ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for i...ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for intermediate and small earthquakes occurred in Chinese mainland and Southern California have been calculated by use of these equations. The results demonstrate that the level and distribution of τ0 are closely related to the location where large earthquakes will occur, i.e. the region with higher level of τ0 will be prone to occur large earthquakes and the region with lower level will usually occur small earthquakes. According to the spatial distribution of τ0 , the seismic hazard regions or the potential earthquake source regions can in some degree be determined. According to the variation of τ0 with time, the large earthquake occurrence time can be roughly estimated. According to the distribution of τ0 in Southern California and variation with time, three high stress level regions are determined, one (Goldfield area) of them is the present seismic hazard region.展开更多
In this paper, the reservoir temperatures of 14 hot spring samples collected from the northern segment of theRed River Fault are calculated by using the mixing-model of SiO2-geothermometer. Based on the features ofres...In this paper, the reservoir temperatures of 14 hot spring samples collected from the northern segment of theRed River Fault are calculated by using the mixing-model of SiO2-geothermometer. Based on the features ofreservoir temperatures and densities of hot springs, the northern segment of the Red River Fault is furtherdivided into 4 sub-segments. The influence of weakening effect of water on seismic activities is discussed fromthe view point of fault-weakening effect of water. It is suggested that the difference in seismic activity between various sub-segments is principally caused by the difference in intensity of the fault-weakening effect ofwater of these sub-segments. The Eryuan sub-segment where the reservoir temperatures are high and the hotsprings are dense corresponds to a slipped region, however, the Jianchuan and Midu sub-segments where thereservoir temperatures are lower and the hot springs are fewer as well as the Dan sub-segment where the hotspring are very few all correspond to locked regions. It is suggested that Dan sub-segment is the riskiest region for strong earthquake preparation, while the possibility for strong earthquake preparation is very little inthe Eryuan sub-segment.展开更多
基金This project was sponsored by the State Seismological Bureau (85070102), China
文摘Two aspects of a new method,which can be used for seismic zoning,are introduced in this paper.On the one hand,the approach to estimate b value and annual activity rate proposed by Kijko and Sellevoll needs to use the earthquake catalogue.The existing earthquake catalogue contains both historical and recent instrumental data sets and it is inadequate to use only one part.Combining the large number of historical events with recent complete records and taking the magnitude uncertainty into account,Kijko’s method gives the maximum likelihood estimation of b value and annual activity rate,which might be more realistic.On the other hand,this method considers the source zone boundary uncertainty in seismic hazard analysis,which means the earthquake activity rate across a boundary of a source zone changes smoothly instead of abruptly and avoids too large a gradient in the calculated results.
文摘ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for intermediate and small earthquakes occurred in Chinese mainland and Southern California have been calculated by use of these equations. The results demonstrate that the level and distribution of τ0 are closely related to the location where large earthquakes will occur, i.e. the region with higher level of τ0 will be prone to occur large earthquakes and the region with lower level will usually occur small earthquakes. According to the spatial distribution of τ0 , the seismic hazard regions or the potential earthquake source regions can in some degree be determined. According to the variation of τ0 with time, the large earthquake occurrence time can be roughly estimated. According to the distribution of τ0 in Southern California and variation with time, three high stress level regions are determined, one (Goldfield area) of them is the present seismic hazard region.
文摘In this paper, the reservoir temperatures of 14 hot spring samples collected from the northern segment of theRed River Fault are calculated by using the mixing-model of SiO2-geothermometer. Based on the features ofreservoir temperatures and densities of hot springs, the northern segment of the Red River Fault is furtherdivided into 4 sub-segments. The influence of weakening effect of water on seismic activities is discussed fromthe view point of fault-weakening effect of water. It is suggested that the difference in seismic activity between various sub-segments is principally caused by the difference in intensity of the fault-weakening effect ofwater of these sub-segments. The Eryuan sub-segment where the reservoir temperatures are high and the hotsprings are dense corresponds to a slipped region, however, the Jianchuan and Midu sub-segments where thereservoir temperatures are lower and the hot springs are fewer as well as the Dan sub-segment where the hotspring are very few all correspond to locked regions. It is suggested that Dan sub-segment is the riskiest region for strong earthquake preparation, while the possibility for strong earthquake preparation is very little inthe Eryuan sub-segment.