The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw...The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.展开更多
Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-d...Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-dimensional(3D) nature. Based on a 3D rotational failure mechanism, this work develops an approach to account for the impact of the vertical strength inhomogeneity on the 3D stability of stepped slopes. Seismic actions are taken into account by introducing the concept of a horizontal seismic coefficient. An upper-bound expression for stability factors is derived in the light of the kinematic approach, and the most critical solution is obtained from an optimization programming. In comparison with the previously published solutions, the validity of the proposed method is shown. A sensitivity analysis is carried out to discuss parametric effects on the stability of 3D stepped inhomogeneous slopes.展开更多
The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is abl...The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.展开更多
A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the p...A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.展开更多
作为一种输入型技能,英语听力在学生的语言习得中占有十分重要的地位,却又困扰着教学双方。作者结合自身教学实践,基于英语专业听力教材Step By Step 2000(3)(4)和学情分析,从课堂导入、预听内容、听中阶段、课外作业、多样化的课堂活...作为一种输入型技能,英语听力在学生的语言习得中占有十分重要的地位,却又困扰着教学双方。作者结合自身教学实践,基于英语专业听力教材Step By Step 2000(3)(4)和学情分析,从课堂导入、预听内容、听中阶段、课外作业、多样化的课堂活动等方面进行了系统的教学设计,以期积极促进学生听力理解水平的提高。展开更多
A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive...A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.展开更多
In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is t...In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is treated as a gray, absorbing, emitting and scattering medium. To simulate the incline surface of FFS, the blocked-off method is employed in this study. The set of governing equations for gas flow are solved numerically using the CFD technique to obtain the temperature and velocity fields. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer mechanisms are presented in the energy equation. For computation of radiative term in energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the divergence of radiative heat flux distribution inside the radiating medium. The effects of optical thickness, radiation-conduction parameter and albedo coefficient on heat transfer behavior of the system are carried out.展开更多
文摘The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.
基金Project(51378510)supported by the National Natural Science Foundation of China
文摘Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-dimensional(3D) nature. Based on a 3D rotational failure mechanism, this work develops an approach to account for the impact of the vertical strength inhomogeneity on the 3D stability of stepped slopes. Seismic actions are taken into account by introducing the concept of a horizontal seismic coefficient. An upper-bound expression for stability factors is derived in the light of the kinematic approach, and the most critical solution is obtained from an optimization programming. In comparison with the previously published solutions, the validity of the proposed method is shown. A sensitivity analysis is carried out to discuss parametric effects on the stability of 3D stepped inhomogeneous slopes.
文摘The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.
文摘A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.
基金National Key Research and Development Program of China (2018YFB0703603, 2019YFA0704903)National Natural Science Foundation of China (11834012, 52130203, 52102298)+1 种基金Foshan Xianhu Laboratory of the Advanced Energy Scienc eand Technology Guangdong Laboratory (XHT2020-004)National Innovation And Entrepreneurship Training Program for College Students (312040000245)。
文摘作为一种输入型技能,英语听力在学生的语言习得中占有十分重要的地位,却又困扰着教学双方。作者结合自身教学实践,基于英语专业听力教材Step By Step 2000(3)(4)和学情分析,从课堂导入、预听内容、听中阶段、课外作业、多样化的课堂活动等方面进行了系统的教学设计,以期积极促进学生听力理解水平的提高。
文摘A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.
文摘In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is treated as a gray, absorbing, emitting and scattering medium. To simulate the incline surface of FFS, the blocked-off method is employed in this study. The set of governing equations for gas flow are solved numerically using the CFD technique to obtain the temperature and velocity fields. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer mechanisms are presented in the energy equation. For computation of radiative term in energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the divergence of radiative heat flux distribution inside the radiating medium. The effects of optical thickness, radiation-conduction parameter and albedo coefficient on heat transfer behavior of the system are carried out.