期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Interdecadal Variability of the East Asian Summer Monsoon and Associated Atmospheric Circulations 被引量:14
1
作者 曾刚 孙照渤 +1 位作者 Wei-Chyung WANG 闵锦忠 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期915-926,共12页
Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) ... Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions. 展开更多
关键词 east asian summer monsoon interdecadal variability Walker circulation east asian Hadley circulation
下载PDF
Distinctive South and East Asian monsoon circulation responses to global warming 被引量:4
2
作者 Tim Li Yuhao Wang +5 位作者 Bin Wang Mingfang Ting Yihui Ding Ying Sun Chao He Guang Yang 《Science Bulletin》 SCIE EI CSCD 2022年第7期762-770,共9页
The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important compo... The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important components within the ASM:South Asian summer monsoon(SASM)and East Asian summer monsoon(EASM).Although current state-of-the-art climate models projected increased precipitation in both SASM and EASM due to the increase of atmospheric moisture,their circulation changes differ markedlyÐA robust strengthening(weakening)of EASM(SASM)circulation was projected.By separating fast and slow processes in response to increased CO_(2) radiative forcing,we demonstrate that EASM circulation strengthening is attributed to the fast land warming and associated Tibetan Plateau thermal forcing.In contrast,SASM circulation weakening is primarily attributed to an El Niño-like oceanic warming pattern in the tropical Pacific and associated suppressed precipitation over the Maritime Continent. 展开更多
关键词 Global warming South and east asian monsoon circulation changes Fast and slow responses Tibetan Plateau Sea surface temperature warming pattern
原文传递
Revisiting the Climatology of Atmospheric Blocking in the Northern Hemisphere 被引量:2
3
作者 Ho Nam CHEUNG 周文 +2 位作者 Hing Yim MOK Man Chi WU Yaping SHAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第2期397-410,共14页
In addition to the occurrence of atmospheric blocking, the climatology of the characteristics of blocking events, including duration, intensity, and extension, in four seasons over the Northern Hemisphere was analyzed... In addition to the occurrence of atmospheric blocking, the climatology of the characteristics of blocking events, including duration, intensity, and extension, in four seasons over the Northern Hemisphere was analyzed for the period 1950-2009. The seasonality and spatial variations of these characteristics were studied according to their longitudinal distributions. In general, there were sharp discrepancies in the blocking characteristics between winter and summer, and these differences were more prominent over the Atlantic and Pacific Oceans. The blocking not only occurred more frequently but also underwent stronger amplification in winter; likewise, the blocking occurred less frequently and underwent weaker amplification in summer. There are very strong interrelationships among different blocking characteristics, suggesting that they are supported by similar physical factors. In addition, the relationship between blocking over different regions and East Asian circulation was examined. Ural-Siberia is a major blocking formation region in all seasons that may exert a downstream impact on East Asia. The impact is generally weak in summer, which is due to its lower intensity and smaller duration. However, the extratropical circulation over East Asia in summer can be disturbed persistently by the frequent occurrence of blocking over the Asian continent or the Western Pacific. In particular, the blocking frequency over the Western Pacific significantly increased during the study period. This climatological information provides a background for studying the impact of blocking on East Asian circulation under both present and future climate conditions. 展开更多
关键词 atmospheric blocking CLIMATOLOGY SEASONALITY east asian circulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部